These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 31681742)
1. Engineering the Yeast van der Hoek SA; Darbani B; Zugaj KE; Prabhala BK; Biron MB; Randelovic M; Medina JB; Kell DB; Borodina I Front Bioeng Biotechnol; 2019; 7():262. PubMed ID: 31681742 [TBL] [Abstract][Full Text] [Related]
2. Engineering precursor supply for the high-level production of ergothioneine in Saccharomyces cerevisiae. van der Hoek SA; Rusnák M; Wang G; Stanchev LD; de Fátima Alves L; Jessop-Fabre MM; Paramasivan K; Jacobsen IH; Sonnenschein N; Martínez JL; Darbani B; Kell DB; Borodina I Metab Eng; 2022 Mar; 70():129-142. PubMed ID: 35085780 [TBL] [Abstract][Full Text] [Related]
3. Engineering ergothioneine production in Yarrowia lipolytica. van der Hoek SA; Rusnák M; Jacobsen IH; Martínez JL; Kell DB; Borodina I FEBS Lett; 2022 May; 596(10):1356-1364. PubMed ID: 34817066 [TBL] [Abstract][Full Text] [Related]
4. Toward more efficient ergothioneine production using the fungal ergothioneine biosynthetic pathway. Chen Z; He Y; Wu X; Wang L; Dong Z; Chen X Microb Cell Fact; 2022 May; 21(1):76. PubMed ID: 35525939 [TBL] [Abstract][Full Text] [Related]
5. [Construction and optimization of ergothioneine-producing Wang L; Wang Y; Li J; DU G; Kang Z Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):796-806. PubMed ID: 35234399 [TBL] [Abstract][Full Text] [Related]
6. The biology of ergothioneine, an antioxidant nutraceutical. Borodina I; Kenny LC; McCarthy CM; Paramasivan K; Pretorius E; Roberts TJ; van der Hoek SA; Kell DB Nutr Res Rev; 2020 Dec; 33(2):190-217. PubMed ID: 32051057 [TBL] [Abstract][Full Text] [Related]
7. Engineering Methyltransferase and Sulfoxide Synthase for High-Yield Production of Ergothioneine. Zhang L; Tang J; Feng M; Chen S J Agric Food Chem; 2023 Jan; 71(1):671-679. PubMed ID: 36571834 [TBL] [Abstract][Full Text] [Related]
8. Successful biosynthesis of natural antioxidant ergothioneine in Saccharomyces cerevisiae required only two genes from Grifola frondosa. Yu YH; Pan HY; Guo LQ; Lin JF; Liao HL; Li HY Microb Cell Fact; 2020 Aug; 19(1):164. PubMed ID: 32811496 [TBL] [Abstract][Full Text] [Related]
9. A Single Doyle S; Cuskelly DD; Conlon N; Fitzpatrick DA; Gilmartin CB; Dix SH; Jones GW Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142753 [TBL] [Abstract][Full Text] [Related]
10. Engineering and systems-level analysis of Saccharomyces cerevisiae for production of 3-hydroxypropionic acid via malonyl-CoA reductase-dependent pathway. Kildegaard KR; Jensen NB; Schneider K; Czarnotta E; Özdemir E; Klein T; Maury J; Ebert BE; Christensen HB; Chen Y; Kim IK; Herrgård MJ; Blank LM; Forster J; Nielsen J; Borodina I Microb Cell Fact; 2016 Mar; 15():53. PubMed ID: 26980206 [TBL] [Abstract][Full Text] [Related]
11. Fermentative Production of Ergothioneine by Exploring Novel Biosynthetic Pathway and Remodulating Precursor Synthesis Pathways. Zhang H; Zhang Y; Zhao M; Zabed HM; Qi X J Agric Food Chem; 2024 Jun; 72(25):14264-14273. PubMed ID: 38860833 [TBL] [Abstract][Full Text] [Related]
12. Engineering non-conventional yeast Rhodotorula toruloides for ergothioneine production. Liu K; Xiang G; Li L; Liu T; Ke J; Xiong L; Wei D; Wang F Biotechnol Biofuels Bioprod; 2024 May; 17(1):65. PubMed ID: 38741169 [TBL] [Abstract][Full Text] [Related]
13. Identification of genes whose expressions are enhanced or reduced in baker's yeast during fed-batch culture process using molasses medium by DNA microarray analysis. Shima J; Kuwazaki S; Tanaka F; Watanabe H; Yamamoto H; Nakajima R; Tokashiki T; Tamura H Int J Food Microbiol; 2005 Jun; 102(1):63-71. PubMed ID: 15925003 [TBL] [Abstract][Full Text] [Related]
14. Gram-scale fermentative production of ergothioneine driven by overproduction of cysteine in Escherichia coli. Tanaka N; Kawano Y; Satoh Y; Dairi T; Ohtsu I Sci Rep; 2019 Feb; 9(1):1895. PubMed ID: 30760790 [TBL] [Abstract][Full Text] [Related]
15. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae. Chai F; Wang Y; Mei X; Yao M; Chen Y; Liu H; Xiao W; Yuan Y Microb Cell Fact; 2017 Mar; 16(1):54. PubMed ID: 28356104 [TBL] [Abstract][Full Text] [Related]
16. l-Ergothioneine improves the developmental potential of in vitro sheep embryos without influencing OCTN1-mediated cross-membrane transcript expression. Mishra A; Reddy IJ; Dhali A; Javvaji PK Zygote; 2018 Apr; 26(2):149-161. PubMed ID: 29607799 [TBL] [Abstract][Full Text] [Related]
17. Engineering the L-tryptophan metabolism for efficient de novo biosynthesis of tryptophol in Saccharomyces cerevisiae. Li Y; Sun J; Fu Z; He Y; Chen X; Wang S; Zhang L; Jian J; Yang W; Liu C; Liu X; Yang Y; Bai Z Biotechnol Biofuels Bioprod; 2024 Oct; 17(1):130. PubMed ID: 39415302 [TBL] [Abstract][Full Text] [Related]
18. High-level β-carotene production from xylose by engineered Saccharomyces cerevisiae without overexpression of a truncated HMG1 (tHMG1). Sun L; Atkinson CA; Lee YG; Jin YS Biotechnol Bioeng; 2020 Nov; 117(11):3522-3532. PubMed ID: 33616900 [TBL] [Abstract][Full Text] [Related]
19. Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Lee YG; Seo JH Biotechnol Biofuels; 2019; 12():204. PubMed ID: 31485270 [TBL] [Abstract][Full Text] [Related]
20. Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production. Xu L; Wang D; Chen J; Li B; Li Q; Liu P; Qin Y; Dai Z; Fan F; Zhang X Metab Eng; 2022 Mar; 70():115-128. PubMed ID: 35085779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]