These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 31681749)
1. Biosynthesis of Medium-Chain ω-Hydroxy Fatty Acids by AlkBGT of He Q; Bennett GN; San KY; Wu H Front Bioeng Biotechnol; 2019; 7():273. PubMed ID: 31681749 [TBL] [Abstract][Full Text] [Related]
2. Application of AlkBGT and AlkL from Pseudomonas putida GPo1 for Selective Alkyl Ester ω-Oxyfunctionalization in Escherichia coli. van Nuland YM; Eggink G; Weusthuis RA Appl Environ Microbiol; 2016 Jul; 82(13):3801-3807. PubMed ID: 27084021 [TBL] [Abstract][Full Text] [Related]
3. Metabolic Engineering for Enhanced Medium Chain Omega Hydroxy Fatty Acid Production in Xiao K; Yue XH; Chen WC; Zhou XR; Wang L; Xu L; Huang FH; Wan X Front Microbiol; 2018; 9():139. PubMed ID: 29467747 [TBL] [Abstract][Full Text] [Related]
4. fadD deletion and fadL overexpression in Escherichia coli increase hydroxy long-chain fatty acid productivity. Bae JH; Park BG; Jung E; Lee PG; Kim BG Appl Microbiol Biotechnol; 2014 Nov; 98(21):8917-25. PubMed ID: 25117545 [TBL] [Abstract][Full Text] [Related]
5. Microbial production of medium-chain-length 3-hydroxyalkanoic acids by recombinant Pseudomonas putida KT2442 harboring genes fadL, fadD and phaZ. Yuan MQ; Shi ZY; Wei XX; Wu Q; Chen SF; Chen GQ FEMS Microbiol Lett; 2008 Jun; 283(2):167-75. PubMed ID: 18422622 [TBL] [Abstract][Full Text] [Related]
6. Modulating the import of medium-chain alkanes in E. coli through tuned expression of FadL. Call TP; Akhtar MK; Baganz F; Grant C J Biol Eng; 2016; 10():5. PubMed ID: 27053948 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering of Escherichia coli for the production of hydroxy fatty acids from glucose. Cao Y; Cheng T; Zhao G; Niu W; Guo J; Xian M; Liu H BMC Biotechnol; 2016 Mar; 16():26. PubMed ID: 26956722 [TBL] [Abstract][Full Text] [Related]
8. The production of ω-hydroxy palmitic acid using fatty acid metabolism and cofactor optimization in Escherichia coli. Sung C; Jung E; Choi KY; Bae JH; Kim M; Kim J; Kim EJ; Kim PI; Kim BG Appl Microbiol Biotechnol; 2015 Aug; 99(16):6667-76. PubMed ID: 25957153 [TBL] [Abstract][Full Text] [Related]
9. Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane. Jeon EY; Song JW; Cha HJ; Lee SM; Lee J; Park JB J Biotechnol; 2018 Sep; 281():161-167. PubMed ID: 30016739 [TBL] [Abstract][Full Text] [Related]
10. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids. Clomburg JM; Blankschien MD; Vick JE; Chou A; Kim S; Gonzalez R Metab Eng; 2015 Mar; 28():202-212. PubMed ID: 25638687 [TBL] [Abstract][Full Text] [Related]
11. Combination of ester biosynthesis and ω-oxidation for production of mono-ethyl dicarboxylic acids and di-ethyl esters in a whole-cell biocatalytic setup with Escherichia coli. van Nuland YM; Eggink G; Weusthuis RA Microb Cell Fact; 2017 Nov; 16(1):185. PubMed ID: 29096635 [TBL] [Abstract][Full Text] [Related]
12. On the biologic origin of C6-C10-dicarboxylic and C6-C10-omega-1-hydroxy monocarboxylic acids in human and rat with acyl-CoA dehydrogenation deficiencies: in vitro studies on the omega- and omega-1-oxidation of medium-chain (C6-C12) fatty acids in human and rat liver. Gregersen N; Mortensen PB; Kølvraa S Pediatr Res; 1983 Oct; 17(10):828-34. PubMed ID: 6634246 [TBL] [Abstract][Full Text] [Related]
13. Outer membrane protein AlkL boosts biocatalytic oxyfunctionalization of hydrophobic substrates in Escherichia coli. Julsing MK; Schrewe M; Cornelissen S; Hermann I; Schmid A; Bühler B Appl Environ Microbiol; 2012 Aug; 78(16):5724-33. PubMed ID: 22685130 [TBL] [Abstract][Full Text] [Related]
14. Enhanced production of nonanedioic acid from nonanoic acid by engineered Escherichia coli. Lee Y; Sathesh-Prabu C; Kwak GH; Bang I; Jung HW; Kim D; Lee SK Biotechnol J; 2022 Mar; 17(3):e2000416. PubMed ID: 33964181 [TBL] [Abstract][Full Text] [Related]
15. Biocatalyst engineering by assembly of fatty acid transport and oxidation activities for In vivo application of cytochrome P-450BM-3 monooxygenase. Schneider S; Wubbolts MG; Sanglard D; Witholt B Appl Environ Microbiol; 1998 Oct; 64(10):3784-90. PubMed ID: 9758800 [TBL] [Abstract][Full Text] [Related]
16. Wernig F; Boles E; Oreb M Metab Eng Commun; 2020 Jun; 10():e00111. PubMed ID: 31867212 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis of ω-hydroxy fatty acids and related chemicals from natural fatty acids by recombinant Escherichia coli. Kim SK; Park YC Appl Microbiol Biotechnol; 2019 Jan; 103(1):191-199. PubMed ID: 30417307 [TBL] [Abstract][Full Text] [Related]
18. Production of 12-hydroxy dodecanoic acid methyl ester using a signal peptide sequence-optimized transporter AlkL and a novel monooxygenase. Yoo HW; Kim J; Patil MD; Park BG; Joo SY; Yun H; Kim BG Bioresour Technol; 2019 Nov; 291():121812. PubMed ID: 31376668 [TBL] [Abstract][Full Text] [Related]
19. Characterization of FadL-specific fatty acid binding in Escherichia coli. Black PN Biochim Biophys Acta; 1990 Aug; 1046(1):97-105. PubMed ID: 2204431 [TBL] [Abstract][Full Text] [Related]
20. Production of 10-Hydroxy-2-decenoic Acid from Decanoic Acid via Whole-Cell Catalysis in Engineered Escherichia coli. Li Y; Wang J; Wang F; Wang L; Wang L; Xu Z; Yuan H; Yang X; Li P; Su J; Wang R ChemSusChem; 2022 May; 15(9):e202102152. PubMed ID: 34796684 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]