BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 31681754)

  • 1. Gradient Poly(ethylene glycol) Diacrylate and Cellulose Nanocrystals Tissue Engineering Composite Scaffolds via Extrusion Bioprinting.
    Frost BA; Sutliff BP; Thayer P; Bortner MJ; Foster EJ
    Front Bioeng Biotechnol; 2019; 7():280. PubMed ID: 31681754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation.
    Maturavongsadit P; Narayanan LK; Chansoria P; Shirwaiker R; Benhabbour SR
    ACS Appl Bio Mater; 2021 Mar; 4(3):2342-2353. PubMed ID: 35014355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Fidelity Extrusion Bioprinting of Low-Printability Polymers Using Carbopol as a Rheology Modifier.
    Barreiro Carpio M; Gonzalez Martinez E; Dabaghi M; Ungureanu J; Arizpe Tafoya AV; Gonzalez Martinez DA; Hirota JA; Moran-Mirabal JM
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54234-54248. PubMed ID: 37964517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Candidate Bioinks for Extrusion 3D Bioprinting-A Systematic Review of the Literature.
    Tarassoli SP; Jessop ZM; Jovic T; Hawkins K; Whitaker IS
    Front Bioeng Biotechnol; 2021; 9():616753. PubMed ID: 34722473
    [No Abstract]   [Full Text] [Related]  

  • 5. 3D bioprinting of mechanically tuned bioinks derived from cardiac decellularized extracellular matrix.
    Shin YJ; Shafranek RT; Tsui JH; Walcott J; Nelson A; Kim DH
    Acta Biomater; 2021 Jan; 119():75-88. PubMed ID: 33166713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy.
    Yin J; Yan M; Wang Y; Fu J; Suo H
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):6849-6857. PubMed ID: 29405059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing bioinks for 3D bioprinting using reactive fillers: A review.
    Heid S; Boccaccini AR
    Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering.
    Bandyopadhyay A; Mandal BB; Bhardwaj N
    J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber engraving for bioink bioprinting within 3D printed tissue engineering scaffolds.
    Diaz-Gomez L; Elizondo ME; Koons GL; Diba M; Chim LK; Cosgriff-Hernandez E; Melchiorri AJ; Mikos AG
    Bioprinting; 2020 Jun; 18():. PubMed ID: 33693067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocomposite bioinks for 3D bioprinting.
    Cai Y; Chang SY; Gan SW; Ma S; Lu WF; Yen CC
    Acta Biomater; 2022 Oct; 151():45-69. PubMed ID: 35970479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Alginate-Gelatin-Cholesteryl Ester Liquid Crystals Bioinks for Extrusion Bioprinting of Tissue Engineering Scaffolds.
    Abdulmaged AI; Soon CF; Talip BA; Zamhuri SAA; Mostafa SA; Zhou W
    Polymers (Basel); 2022 Mar; 14(5):. PubMed ID: 35267843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocrystalline Cellulose as a Versatile Engineering Material for Extrusion-Based Bioprinting.
    Read SA; Go CS; Ferreira MJS; Ligorio C; Kimber SJ; Dumanli AG; Domingos MAN
    Pharmaceutics; 2023 Oct; 15(10):. PubMed ID: 37896192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Extrusion 3D Bioprinting: A Focus on Multicomponent Hydrogel-Based Bioinks.
    Cui X; Li J; Hartanto Y; Durham M; Tang J; Zhang H; Hooper G; Lim K; Woodfield T
    Adv Healthc Mater; 2020 Aug; 9(15):e1901648. PubMed ID: 32352649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(ethylene glycol)-Norbornene as a Photoclick Bioink for Digital Light Processing 3D Bioprinting.
    Kim MH; Lin CC
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):2737-2746. PubMed ID: 36608274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioprinting of alginate-carboxymethyl chitosan scaffolds for enamel tissue engineering
    Mohabatpour F; Duan X; Yazdanpanah Z; Tabil XL; Lobanova L; Zhu N; Papagerakis S; Chen X; Papagerakis P
    Biofabrication; 2022 Dec; 15(1):. PubMed ID: 36583240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Synthesis of Stem Cell-Laden Keratin/Glycol Chitosan Methacrylate Bioinks for 3D Bioprinting.
    Yu KF; Lu TY; Li YE; Teng KC; Chen YC; Wei Y; Lin TE; Cheng NC; Yu J
    Biomacromolecules; 2022 Jul; 23(7):2814-2826. PubMed ID: 35438970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting the role of nanoparticles for use in hydrogel-based bioprinting applications: concept, design, and recent advances.
    Chakraborty A; Roy A; Ravi SP; Paul A
    Biomater Sci; 2021 Sep; 9(19):6337-6354. PubMed ID: 34397056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioprinting Au Natural: The Biologics of Bioinks.
    Willson K; Atala A; Yoo JJ
    Biomolecules; 2021 Oct; 11(11):. PubMed ID: 34827591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues.
    de Melo BAG; Jodat YA; Cruz EM; Benincasa JC; Shin SR; Porcionatto MA
    Acta Biomater; 2020 Nov; 117():60-76. PubMed ID: 32949823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering.
    Choe R; Devoy E; Kuzemchak B; Sherry M; Jabari E; Packer JD; Fisher JP
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35120345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.