These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 31681754)

  • 21. Extrusion 3D (Bio)Printing of Alginate-Gelatin-Based Composite Scaffolds for Skeletal Muscle Tissue Engineering.
    Sonaye SY; Ertugral EG; Kothapalli CR; Sikder P
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multilayered and heterogeneous hydrogel construct printing system with crosslinking aerosol.
    Lee G; Kim SJ; Chun H; Park JK
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34507302
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts.
    Gonzalez-Fernandez T; Tenorio AJ; Campbell KT; Silva EA; Leach JK
    Tissue Eng Part A; 2021 Sep; 27(17-18):1168-1181. PubMed ID: 33218292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biomaterials / bioinks and extrusion bioprinting.
    Chen XB; Fazel Anvari-Yazdi A; Duan X; Zimmerling A; Gharraei R; Sharma NK; Sweilem S; Ning L
    Bioact Mater; 2023 Oct; 28():511-536. PubMed ID: 37435177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Bioprinting of Human Tissues: Biofabrication, Bioinks, and Bioreactors.
    Zhang J; Wehrle E; Rubert M; Müller R
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chitin nanocrystal-assisted 3D bioprinting of gelatin methacrylate scaffolds.
    Ling Z; Zhao J; Song S; Xiao S; Wang P; An Z; Fu Z; Shao J; Zhang Z; Fu W; Song S
    Regen Biomater; 2023; 10():rbad058. PubMed ID: 37359730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review.
    Dzobo K; Motaung KSCM; Adesida A
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540457
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of agarose-gelatin bioinks for extrusion-based bioprinting and cell encapsulation.
    Dravid A; McCaughey-Chapman A; Raos B; O'Carroll SJ; Connor B; Svirskis D
    Biomed Mater; 2022 Jun; 17(5):. PubMed ID: 35654031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrashort Peptide Bioinks Support Automated Printing of Large-Scale Constructs Assuring Long-Term Survival of Printed Tissue Constructs.
    Susapto HH; Alhattab D; Abdelrahman S; Khan Z; Alshehri S; Kahin K; Ge R; Moretti M; Emwas AH; Hauser CAE
    Nano Lett; 2021 Apr; 21(7):2719-2729. PubMed ID: 33492960
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks.
    Flégeau K; Puiggali-Jou A; Zenobi-Wong M
    Biofabrication; 2022 May; 14(3):. PubMed ID: 35483326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable metacrylated silk fibroin-based hybrid bioinks for the bioprinting of tissue engineering scaffolds.
    Yang J; Li Z; Li S; Zhang Q; Zhou X; He C
    Biomater Sci; 2023 Feb; 11(5):1895-1909. PubMed ID: 36722864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 'Printability' of Candidate Biomaterials for Extrusion Based 3D Printing: State-of-the-Art.
    Kyle S; Jessop ZM; Al-Sabah A; Whitaker IS
    Adv Healthc Mater; 2017 Aug; 6(16):. PubMed ID: 28558161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration.
    Zhou X; Tenaglio S; Esworthy T; Hann SY; Cui H; Webster TJ; Fenniri H; Zhang LG
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33219-33228. PubMed ID: 32603082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clickable Dynamic Bioinks Enable Post-Printing Modifications of Construct Composition and Mechanical Properties Controlled over Time and Space.
    Tournier P; Saint-Pé G; Lagneau N; Loll F; Halgand B; Tessier A; Guicheux J; Visage CL; Delplace V
    Adv Sci (Weinh); 2023 Oct; 10(30):e2300055. PubMed ID: 37712185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved accuracy and precision of bioprinting through progressive cavity pump-controlled extrusion.
    Fisch P; Holub M; Zenobi-Wong M
    Biofabrication; 2020 Dec; 13(1):. PubMed ID: 33086207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments.
    Piluso S; Skvortsov GA; Altunbek M; Afghah F; Khani N; Koç B; Patterson J
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34192670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assembling Microgels via Dynamic Cross-Linking Reaction Improves Printability, Microporosity, Tissue-Adhesion, and Self-Healing of Microgel Bioink for Extrusion Bioprinting.
    Feng Q; Li D; Li Q; Li H; Wang Z; Zhu S; Lin Z; Cao X; Dong H
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15653-15666. PubMed ID: 35344348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and Characterization of Complementary Polymer Network Bioinks for 3D Bioprinting of Soft Tissue Constructs.
    Song S; Li Y; Huang J; Zhang Z
    Macromol Biosci; 2022 Sep; 22(9):e2200181. PubMed ID: 35778775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanocomposite Bioprinting for Tissue Engineering Applications.
    Loukelis K; Helal ZA; Mikos AG; Chatzinikolaidou M
    Gels; 2023 Jan; 9(2):. PubMed ID: 36826273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.