These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31681823)

  • 1. Application of Peukert's Law in Supercapacitor Discharge Time Prediction.
    Yang H
    J Energy Storage; 2019 Apr; 22():98-105. PubMed ID: 31681823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peukert's Law for Supercapacitors with Constant Power Loads: Applicability and Application.
    Yang H
    IEEE Trans Ind Appl; 2019; 55(4):4064-4072. PubMed ID: 32981981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dependence of Supercapacitor Peukert Constant on Voltage, Aging, and Temperature.
    Yang H
    IEEE Trans Power Electron; 2019 Oct; 34(10):9978-9992. PubMed ID: 32982040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive study of supercapacitor Peukert constant dependence on voltage.
    Yang H
    J Energy Storage; 2020 Feb; 27():. PubMed ID: 32064306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Supercapacitor Physics on Its Charge Capacity.
    Yang H
    IEEE Trans Power Electron; 2019 Jan; 34(1):646-658. PubMed ID: 31439984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peukert's Law-Based State-of-Charge Estimation for Primary Battery Powered Sensor Nodes.
    Dai H; Xia Y; Mao J; Xu C; Liu W; Hu S
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of Peukert's Constant Using Impedance Spectroscopy: Application to Supercapacitors.
    Mills EM; Kim S
    J Phys Chem Lett; 2016 Dec; 7(24):5101-5104. PubMed ID: 27973904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlating Li/O2 cell capacity and product morphology with discharge current.
    Griffith LD; Sleightholme AE; Mansfield JF; Siegel DJ; Monroe CW
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7670-8. PubMed ID: 25775079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of Supercapacitor Charge Capacity Bounds Considering Charge Redistribution.
    Yang H
    IEEE Trans Power Electron; 2018 Aug; 33(8):6980-6993. PubMed ID: 30410220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative study of supercapacitor capacitance characterization methods.
    Yang H
    J Energy Storage; 2020 Jun; 29():. PubMed ID: 32284959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Figure of Merit for Fast-Charging Li-ion Battery Materials.
    Xia H; Zhang W; Cao S; Chen X
    ACS Nano; 2022 Jun; 16(6):8525-8530. PubMed ID: 35708489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium nanoparticles stabilized by mercaptan and acetylene derivatives with supercapacitor application.
    Guo Y; Zhang W; Sun Y; Dai M
    MethodsX; 2018; 5():795-796. PubMed ID: 30094207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switchable PNIPAm/PPyNT Hydrogel for Smart Supercapacitors: External Control of Capacitance for Pulsed Energy Generation or Prolongation of Discharge Time.
    Elashnikov R; Trelin A; Tulupova A; Miliutina E; Zahorjanová K; Ulbrich P; Tomeček D; Fitl P; Švorčík V; Lyutakov O
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):48030-48039. PubMed ID: 34582190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of temperature on the capacitance of carbon nanotube supercapacitors.
    Masarapu C; Zeng HF; Hung KH; Wei B
    ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A physical model of a supercapacitor to reveal the mechanism of the voltage recovery phenomenon.
    Liu D; Kirk DW; Jia CQ
    Chem Commun (Camb); 2023 Jul; 59(54):8428-8431. PubMed ID: 37334921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent surface modification of chemically derived graphene and its application as supercapacitor electrode material.
    Jana M; Khanra P; Murmu NC; Samanta P; Lee JH; Kuila T
    Phys Chem Chem Phys; 2014 Apr; 16(16):7618-26. PubMed ID: 24643242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal Synthesized of CoMoO
    Li W; Wang X; Hu Y; Sun L; Gao C; Zhang C; Liu H; Duan M
    Nanoscale Res Lett; 2018 Apr; 13(1):120. PubMed ID: 29693212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. o-Benzenediol-Functionalized Carbon Nanosheets as Low Self-Discharge Aqueous Supercapacitors.
    Xiong T; Yu ZG; Lee WSV; Xue J
    ChemSusChem; 2018 Sep; 11(18):3307-3314. PubMed ID: 30009446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A facile preparation of polyaniline/cellulose hydrogels for all-in-one flexible supercapacitor with remarkable enhanced performance.
    Gong Q; Li Y; Liu X; Xia Z; Yang Y
    Carbohydr Polym; 2020 Oct; 245():116611. PubMed ID: 32718658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Type of Battery-Supercapacitor Hybrid Device with Highly Switchable Dual Performances Based on a Carbon Skeleton/Mg
    Li N; Du Y; Feng QP; Huang GW; Xiao HM; Fu SY
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44828-44838. PubMed ID: 29200256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.