These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 31681868)

  • 1. Coalescence, Spreading, and Rebound of Two Water Droplets with Different Temperatures on a Superhydrophobic Surface.
    Xu H; Chang C; Yi N; Tao P; Song C; Wu J; Deng T; Shang W
    ACS Omega; 2019 Oct; 4(18):17615-17622. PubMed ID: 31681868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double Droplets Impact an Inclined Superhydrophobic Surface.
    Gao SR; Huang XY; Liu Z; Sun JJ; Yang YR; Wang XD
    Langmuir; 2024 Jun; 40(24):12818-12827. PubMed ID: 38842118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repulsion, Acceleration, and Coalescence between Water Droplets on Superhydrophobic Glass by Triboelectrification.
    Chen KT; Wu YP; Huang YF; Hsu CC; Shieh J
    Langmuir; 2024 Jun; 40(25):13219-13226. PubMed ID: 38865155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
    Guo C; Liu L; Yang R; Lu J; Liu S
    Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Damping the jump of coalescing droplets through substrate compliance.
    Pal GC; Agrawal M; Siddhartha SS; Sharma CS
    Soft Matter; 2024 Jul; ():. PubMed ID: 39076071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coalescence-Induced Droplet Jumping on Superhydrophobic Surfaces with Annular Wedge-Shaped Micropillar Arrays.
    Hou H; Wu X; Hu Z; Gao S; Yuan Z
    Langmuir; 2023 Dec; 39(51):18825-18833. PubMed ID: 38096374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of Droplets Impacting on Aerogel, Liquid Infused, and Liquid-Like Solid Surfaces.
    Dawson J; Coaster S; Han R; Gausden J; Liu H; McHale G; Chen J
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2301-2312. PubMed ID: 36580541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coalescence-Induced Droplet Jumping for Electro-Thermal Sensing.
    Chettiar K; Ghaddar D; Birbarah P; Li Z; Kim M; Miljkovic N
    Langmuir; 2023 Dec; 39(51):18909-18922. PubMed ID: 38078869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity-Switched Droplet Rebound Direction on Anisotropic Superhydrophobic Surfaces.
    Li P; Zhan F; Wang L
    Small; 2024 Feb; 20(6):e2305568. PubMed ID: 37752749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melting Process of Frozen Sessile Droplets on Superhydrophobic Surfaces.
    Cui J; Wang T; Che Z
    Langmuir; 2023 Oct; 39(41):14800-14810. PubMed ID: 37797346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oblique impingement of binary droplets at the nanoscale on superhydrophobic surfaces: A molecular dynamics study.
    Zhang A; Cui K; Tian Y; Zhang B; Wang T; He X
    J Chem Phys; 2024 May; 160(17):. PubMed ID: 38748016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coalescence Dynamics of Acoustically Levitated Droplets.
    Hasegawa K; Watanabe A; Kaneko A; Abe Y
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32224992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding and Utilizing Droplet Impact on Superhydrophobic Surfaces: Phenomena, Mechanisms, Regulations, Applications, and Beyond.
    Hu Z; Chu F; Shan H; Wu X; Dong Z; Wang R
    Adv Mater; 2024 Mar; 36(11):e2310177. PubMed ID: 38069449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uniform and Persistent Jumping Detachment of Condensed Nanodroplets.
    Ma C; Wang L; Xu Z; Tong W; Zheng Q
    Nano Lett; 2024 Jan; 24(4):1439-1446. PubMed ID: 38237068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic-Actuated Jumping of Droplets on Superhydrophobic Grooved Surfaces: A Versatile Strategy for Three-Dimensional Droplet Transportation.
    Huang Y; Wen G; Fan Y; He M; Sun W; Tian X; Huang S
    ACS Nano; 2024 Feb; 18(8):6359-6372. PubMed ID: 38363638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Asymmetry on the Contact Time of Droplet Impact on Superhydrophobic Cylindrical Surfaces.
    Chen X; Zhang LZ; Wang YF; Jin JX; Wang YB; Yang YR; Gao SR; Zheng SF; Wang XD; Lee DJ
    Langmuir; 2023 Dec; 39(51):19037-19047. PubMed ID: 38096493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contact Time of a Droplet Off-Centered Impacting a Superhydrophobic Cylinder.
    Zhang LZ; Chen X; Wang YF; Yang YR; Zheng SF; Lee DJ; Wang XD
    Langmuir; 2023 Nov; 39(45):16023-16034. PubMed ID: 37916520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of Sweeping Effect: Droplet Coalescence Jumping of a Rolling and Static Droplet.
    Liu C; Zhao M; Guo J; Zhang S; Song L; Zheng Y
    Langmuir; 2024 Jan; 40(4):2278-2287. PubMed ID: 38237057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Condensation Droplet Self-Ejection from Divergent Structures with Uniform Wettability.
    Di Novo NG; Bagolini A; Pugno NM
    ACS Nano; 2024 Mar; 18(12):8626-8640. PubMed ID: 38417167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the role of surface morphology in impacting-freezing dynamics of supercooled droplets.
    Hosseini SR; Moghimi M; Nouri NM
    Sci Rep; 2024 Jun; 14(1):12585. PubMed ID: 38821975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.