These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31681944)

  • 1. PRODIGY: personalized prioritization of driver genes.
    Dinstag G; Shamir R
    Bioinformatics; 2020 Mar; 36(6):1831-1839. PubMed ID: 31681944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritization of cancer driver gene with prize-collecting steiner tree by introducing an edge weighted strategy in the personalized gene interaction network.
    Zhang SW; Wang ZN; Li Y; Guo WF
    BMC Bioinformatics; 2022 Aug; 23(1):341. PubMed ID: 35974311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PersonaDrive: a method for the identification and prioritization of personalized cancer drivers.
    Erten C; Houdjedj A; Kazan H; Taleb Bahmed AA
    Bioinformatics; 2022 Jun; 38(13):3407-3414. PubMed ID: 35579340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Driver gene detection through Bayesian network integration of mutation and expression profiles.
    Chen Z; Lu Y; Cao B; Zhang W; Edwards A; Zhang K
    Bioinformatics; 2022 May; 38(10):2781-2790. PubMed ID: 35561191
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying driver genes for individual patients through inductive matrix completion.
    Zhang T; Zhang SW; Li Y
    Bioinformatics; 2021 Dec; 37(23):4477-4484. PubMed ID: 34175939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel hypergraph model for identifying and prioritizing personalized drivers in cancer.
    Zhang N; Ma F; Guo D; Pang Y; Wang C; Zhang Y; Zheng X; Wang M
    PLoS Comput Biol; 2024 Apr; 20(4):e1012068. PubMed ID: 38683860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. driveR: a novel method for prioritizing cancer driver genes using somatic genomics data.
    Ülgen E; Sezerman OU
    BMC Bioinformatics; 2021 May; 22(1):263. PubMed ID: 34030627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovering personalized driver mutation profiles of single samples in cancer by network control strategy.
    Guo WF; Zhang SW; Liu LL; Liu F; Shi QQ; Zhang L; Tang Y; Zeng T; Chen L
    Bioinformatics; 2018 Jun; 34(11):1893-1903. PubMed ID: 29329368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PANACEA: network-based methods for pharmacotherapy prioritization in personalized oncology.
    Ulgen E; Ozisik O; Sezerman OU
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36689556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring subgroup-specific driver genes from heterogeneous cancer samples via subspace learning with subgroup indication.
    Xi J; Yuan X; Wang M; Li A; Li X; Huang Q
    Bioinformatics; 2020 Mar; 36(6):1855-1863. PubMed ID: 31626284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient methods for identifying mutated driver pathways in cancer.
    Zhao J; Zhang S; Wu LY; Zhang XS
    Bioinformatics; 2012 Nov; 28(22):2940-7. PubMed ID: 22982574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying cooperating cancer driver genes in individual patients through hypergraph random walk.
    Zhang T; Zhang SW; Xie MY; Li Y
    J Biomed Inform; 2024 Sep; 157():104710. PubMed ID: 39159864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration.
    Zhang W; Wang SL
    Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DriverRWH: discovering cancer driver genes by random walk on a gene mutation hypergraph.
    Wang C; Shi J; Cai J; Zhang Y; Zheng X; Zhang N
    BMC Bioinformatics; 2022 Jul; 23(1):277. PubMed ID: 35831792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing cancer driver gene identification through an integrative network and pathway approach.
    Song J; Song Z; Gong Y; Ge L; Lou W
    J Biomed Inform; 2024 Oct; 158():104729. PubMed ID: 39306314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QuaDMutNetEx: a method for detecting cancer driver genes with low mutation frequency.
    Bokhari Y; Alhareeri A; Arodz T
    BMC Bioinformatics; 2020 Mar; 21(1):122. PubMed ID: 32293263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of driver genes based on gene mutational effects and network centrality.
    Tang YY; Wei PJ; Zhao JP; Xia J; Cao RF; Zheng CH
    BMC Bioinformatics; 2021 Sep; 22(Suppl 3):457. PubMed ID: 34560840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cancer driver gene discovery through an integrative genomics approach in a non-parametric Bayesian framework.
    Yang H; Wei Q; Zhong X; Yang H; Li B
    Bioinformatics; 2017 Feb; 33(4):483-490. PubMed ID: 27797769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.