BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 31682172)

  • 1. Blockade of sodium-glucose cotransporter 2 suppresses high glucose-induced angiotensinogen augmentation in renal proximal tubular cells.
    Satou R; Cypress MW; Woods TC; Katsurada A; Dugas CM; Fonseca VA; Navar LG
    Am J Physiol Renal Physiol; 2020 Jan; 318(1):F67-F75. PubMed ID: 31682172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Canagliflozin Prevents Intrarenal Angiotensinogen Augmentation and Mitigates Kidney Injury and Hypertension in Mouse Model of Type 2 Diabetes Mellitus.
    Woods TC; Satou R; Miyata K; Katsurada A; Dugas CM; Klingenberg NC; Fonseca VA; Navar LG
    Am J Nephrol; 2019; 49(4):331-342. PubMed ID: 30921791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Basolateral Glucose Increases Sodium-Glucose Cotransporter 2 and Reduces Sirtuin-1 in Renal Tubules through Glucose Transporter-2 Detection.
    Umino H; Hasegawa K; Minakuchi H; Muraoka H; Kawaguchi T; Kanda T; Tokuyama H; Wakino S; Itoh H
    Sci Rep; 2018 May; 8(1):6791. PubMed ID: 29717156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiotensin II up-regulates sodium-glucose co-transporter 2 expression and SGLT2 inhibitor attenuates Ang II-induced hypertensive renal injury in mice.
    Miyata KN; Lo CS; Zhao S; Liao MC; Pang Y; Chang SY; Peng J; Kretzler M; Filep JG; Ingelfinger JR; Zhang SL; Chan JSD
    Clin Sci (Lond); 2021 Apr; 135(7):943-961. PubMed ID: 33822013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmentation of angiotensinogen expression in the proximal tubule by intracellular angiotensin II via AT1a/MAPK/NF-кB signaling pathways.
    Zhuo JL; Kobori H; Li XC; Satou R; Katsurada A; Navar LG
    Am J Physiol Renal Physiol; 2016 May; 310(10):F1103-12. PubMed ID: 26864937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrophage-derived IL-6 contributes to ANG II-mediated angiotensinogen stimulation in renal proximal tubular cells.
    O'Leary R; Penrose H; Miyata K; Satou R
    Am J Physiol Renal Physiol; 2016 May; 310(10):F1000-7. PubMed ID: 27009340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of SGLT2 inhibition in human kidney proximal tubular cells--renoprotection in diabetic nephropathy?
    Panchapakesan U; Pegg K; Gross S; Komala MG; Mudaliar H; Forbes J; Pollock C; Mather A
    PLoS One; 2013; 8(2):e54442. PubMed ID: 23390498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced Glycation End Products Stimulate Angiotensinogen Production in Renal Proximal Tubular Cells.
    Garagliano JM; Katsurada A; Miyata K; Derbenev AV; Zsombok A; Navar LG; Satou R
    Am J Med Sci; 2019 Jan; 357(1):57-66. PubMed ID: 30466736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1.
    Novikov A; Fu Y; Huang W; Freeman B; Patel R; van Ginkel C; Koepsell H; Busslinger M; Onishi A; Nespoux J; Vallon V
    Am J Physiol Renal Physiol; 2019 Jan; 316(1):F173-F185. PubMed ID: 30427222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis.
    Maeda S; Matsui T; Takeuchi M; Yamagishi S
    Diabetes Metab Res Rev; 2013 Jul; 29(5):406-12. PubMed ID: 23508966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiotensin AT1 receptor activation mediates high glucose-induced epithelial-mesenchymal transition in renal proximal tubular cells.
    Zhou L; Xue H; Yuan P; Ni J; Yu C; Huang Y; Lu LM
    Clin Exp Pharmacol Physiol; 2010 Sep; 37(9):e152-7. PubMed ID: 20590668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual RAS blockade normalizes angiotensin-converting enzyme-2 expression and prevents hypertension and tubular apoptosis in Akita angiotensinogen-transgenic mice.
    Lo CS; Liu F; Shi Y; Maachi H; Chenier I; Godin N; Filep JG; Ingelfinger JR; Zhang SL; Chan JS
    Am J Physiol Renal Physiol; 2012 Apr; 302(7):F840-52. PubMed ID: 22205225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of sodium/glucose cotransporter inhibition on a rat model of angiotensin II-dependent kidney damage.
    Reyes-Pardo H; Bautista R; Vargas-Robles H; Rios A; Sánchez D; Escalante B
    BMC Nephrol; 2019 Aug; 20(1):292. PubMed ID: 31375080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium-Glucose Co-Transporter 2 Inhibitors Correct Metabolic Maladaptation of Proximal Tubular Epithelial Cells in High-Glucose Conditions.
    Shirakawa K; Sano M
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33081406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of stimulated intrarenal angiotensinogen in hypertension.
    Satou R; Shao W; Navar LG
    Ther Adv Cardiovasc Dis; 2015 Aug; 9(4):181-90. PubMed ID: 25987608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the effects of insulin and SGLT2 inhibitor on the Renal Renin-Angiotensin system in type 1 diabetes mice.
    Miyata KN; Zhao S; Wu CH; Lo CS; Ghosh A; Chenier I; Filep JG; Ingelfinger JR; Zhang SL; Chan JSD
    Diabetes Res Clin Pract; 2020 Apr; 162():108107. PubMed ID: 32173417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of VEGF expression by high glucose in proximal tubule epithelial cells.
    Feliers D; Kasinath BS
    Mol Cell Endocrinol; 2010 Jan; 314(1):136-42. PubMed ID: 19765632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SGLT2-independent effects of canagliflozin on NHE3 and mitochondrial complex I activity inhibit proximal tubule fluid transport and albumin uptake.
    Albalawy WN; Youm EB; Shipman KE; Trull KJ; Baty CJ; Long KR; Rbaibi Y; Wang XP; Fagunloye OG; White KA; Jurczak MJ; Kashlan OB; Weisz OA
    Am J Physiol Renal Physiol; 2024 Jun; 326(6):F1041-F1053. PubMed ID: 38660713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardioprotection conferred by sodium-glucose cotransporter 2 inhibitors: a renal proximal tubule perspective.
    Silva Dos Santos D; Polidoro JZ; Borges-Júnior FA; Girardi ACC
    Am J Physiol Cell Physiol; 2020 Feb; 318(2):C328-C336. PubMed ID: 31721613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Canagliflozin regulates metabolic reprogramming in diabetic kidney disease by inducing fasting-like and aestivation-like metabolic patterns.
    Shao M; Chen D; Wang Q; Guo F; Wei F; Zhang W; Gan T; Luo Y; Fan X; Du P; Liu Y; Ma X; Ren G; Song Y; Zhao Y; Qin G
    Diabetologia; 2024 Apr; 67(4):738-754. PubMed ID: 38236410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.