These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31682260)

  • 1. Application of machine learning techniques to electron microscopic/spectroscopic image data analysis.
    Muto S; Shiga M
    Microscopy (Oxf); 2020 Apr; 69(2):110-122. PubMed ID: 31682260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of local chemical states of lithium and their spatial mapping by scanning transmission electron microscopy, electron energy-loss spectroscopy and hyperspectral image analysis.
    Muto S; Tatsumi K
    Microscopy (Oxf); 2017 Feb; 66(1):39-49. PubMed ID: 27655938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retrieving the Quantitative Chemical Information at Nanoscale from Scanning Electron Microscope Energy Dispersive X-ray Measurements by Machine Learning.
    Jany BR; Janas A; Krok F
    Nano Lett; 2017 Nov; 17(11):6520-6525. PubMed ID: 29032683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient quantitative hyperspectral image unmixing method for large-scale Raman micro-spectroscopy data analysis.
    Lobanova EG; Lobanov SV
    Anal Chim Acta; 2019 Mar; 1050():32-43. PubMed ID: 30661589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blind decomposition of transmission light microscopic hyperspectral cube using sparse representation.
    Begelman G; Zibulevsky M; Rivlin E; Kolatt T
    IEEE Trans Med Imaging; 2009 Aug; 28(8):1317-24. PubMed ID: 19258197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High speed/low dose analytical electron microscopy with dynamic sampling.
    Hujsak KA; Roth EW; Kellogg W; Li Y; Dravid VP
    Micron; 2018 May; 108():31-40. PubMed ID: 29550673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical mapping and quantification at the atomic scale by scanning transmission electron microscopy.
    Chu MW; Chen CH
    ACS Nano; 2013 Jun; 7(6):4700-7. PubMed ID: 23799301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization.
    Shiga M; Tatsumi K; Muto S; Tsuda K; Yamamoto Y; Mori T; Tanji T
    Ultramicroscopy; 2016 Nov; 170():43-59. PubMed ID: 27529804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-negative matrix factorization for mining big data obtained using four-dimensional scanning transmission electron microscopy.
    Uesugi F; Koshiya S; Kikkawa J; Nagai T; Mitsuishi K; Kimoto K
    Ultramicroscopy; 2021 Feb; 221():113168. PubMed ID: 33290980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic microscopic image analysis by moving window local Fourier Transform and Machine Learning.
    Jany BR; Janas A; Krok F
    Micron; 2020 Mar; 130():102800. PubMed ID: 31855656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. espm: A Python library for the simulation of STEM-EDXS datasets.
    Teurtrie A; Perraudin N; Holvoet T; Chen H; Alexander DTL; Obozinski G; Hébert C
    Ultramicroscopy; 2023 Jul; 249():113719. PubMed ID: 37003127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dose-limited spectroscopic imaging of soft materials by low-loss EELS in the scanning transmission electron microscope.
    Yakovlev S; Libera M
    Micron; 2008 Aug; 39(6):734-40. PubMed ID: 18096395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts.
    Cucci C; Delaney JK; Picollo M
    Acc Chem Res; 2016 Oct; 49(10):2070-2079. PubMed ID: 27677864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale light element identification using machine learning aided STEM-EDS.
    Kim HK; Ha HY; Bae JH; Cho MK; Kim J; Han J; Suh JY; Kim GH; Lee TH; Jang JH; Chun D
    Sci Rep; 2020 Aug; 10(1):13699. PubMed ID: 32792596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Approach to Enable Spectral Imaging Analysis for Particularly Complex Nanomaterial Systems.
    Jia H; Wang C; Wang C; Clancy P
    ACS Nano; 2023 Jan; 17(1):453-460. PubMed ID: 36537569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of multivariate statistical analysis to STEM X-ray spectral images: interfacial analysis in microelectronics.
    Kotula PG; Keenan MR
    Microsc Microanal; 2006 Dec; 12(6):538-44. PubMed ID: 19830946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment.
    Utsunomiya S; Ewing RC
    Environ Sci Technol; 2003 Feb; 37(4):786-91. PubMed ID: 12636280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-negative matrix factorization-aided phase unmixing and trace element quantification of STEM-EDXS data.
    Chen H; Nabiei F; Badro J; Alexander DTL; Hébert C
    Ultramicroscopy; 2024 Sep; 263():113981. PubMed ID: 38805837
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.