These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31682401)

  • 21. Membrane fusion and drug delivery with carbon nanotube porins.
    Ho NT; Siggel M; Camacho KV; Bhaskara RM; Hicks JM; Yao YC; Zhang Y; Köfinger J; Hummer G; Noy A
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33941689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origin of giant ionic currents in carbon nanotube channels.
    Pang P; He J; Park JH; Krstić PS; Lindsay S
    ACS Nano; 2011 Sep; 5(9):7277-83. PubMed ID: 21888368
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon nanotube porin diffusion in mixed composition supported lipid bilayers.
    Sullivan K; Zhang Y; Lopez J; Lowe M; Noy A
    Sci Rep; 2020 Jul; 10(1):11908. PubMed ID: 32681044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Breakdown of electroneutrality in nanopores.
    Levy A; de Souza JP; Bazant MZ
    J Colloid Interface Sci; 2020 Nov; 579():162-176. PubMed ID: 32590157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ion exclusion by sub-2-nm carbon nanotube pores.
    Fornasiero F; Park HG; Holt JK; Stadermann M; Grigoropoulos CP; Noy A; Bakajin O
    Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17250-5. PubMed ID: 18539773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ion current calculations based on three dimensional Poisson-Nernst-Planck theory for a cyclic peptide nanotube.
    Hwang H; Schatz GC; Ratner MA
    J Phys Chem B; 2006 Apr; 110(13):6999-7008. PubMed ID: 16571014
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics simulations of carbon nanotube porins in lipid bilayers.
    Vögele M; Köfinger J; Hummer G
    Faraday Discuss; 2018 Sep; 209(0):341-358. PubMed ID: 29974904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthetic cation-selective nanotube: permeant cations chaperoned by anions.
    Hilder TA; Gordon D; Chung SH
    J Chem Phys; 2011 Jan; 134(4):045103. PubMed ID: 21280804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electronic control of H+ current in a bioprotonic device with carbon nanotube porins.
    Hemmatian Z; Tunuguntla RH; Noy A; Rolandi M
    PLoS One; 2019; 14(2):e0212197. PubMed ID: 30794578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electroosmosis Dominates Electrophoresis of Antibiotic Transport Across the Outer Membrane Porin F.
    Bafna JA; Pangeni S; Winterhalter M; Aksoyoglu MA
    Biophys J; 2020 Jun; 118(11):2844-2852. PubMed ID: 32348725
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-scaling behavior of electroosmotic flow in voltage-gated nanopores.
    Lian C; Gallegos A; Liu H; Wu J
    Phys Chem Chem Phys; 2016 Dec; 19(1):450-457. PubMed ID: 27905599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of electroosmotic flow in transdermal iontophoresis.
    Pikal MJ
    Adv Drug Deliv Rev; 2001 Mar; 46(1-3):281-305. PubMed ID: 11259844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrically facilitated molecular transport. Analysis of the relative contributions of diffusion, migration, and electroosmosis to solute transport in an ion-exchange membrane.
    Bath BD; White HS; Scott ER
    Anal Chem; 2000 Feb; 72(3):433-42. PubMed ID: 10695125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulating Ion Transport in Peptide Nanotubes by Tailoring the Nanotube Lumen Chemistry.
    Ruiz L; Benjamin A; Sullivan M; Keten S
    J Phys Chem Lett; 2015 May; 6(9):1514-20. PubMed ID: 26263305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Promotion of Water Channels for Enhanced Ion Transport in 14 nm Diameter Carbon Nanotubes.
    Sheng J; Zhu Q; Zeng X; Yang Z; Zhang X
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11009-11015. PubMed ID: 28264153
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diameter Dependence of Water Filling in Lithographically Segmented Isolated Carbon Nanotubes.
    Faucher S; Kuehne M; Koman VB; Northrup N; Kozawa D; Yuan Z; Li SX; Zeng Y; Ichihara T; Misra RP; Aluru N; Blankschtein D; Strano MS
    ACS Nano; 2021 Feb; 15(2):2778-2790. PubMed ID: 33512159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Properties of lipid electropores II: Comparison of continuum-level modeling of pore conductance to molecular dynamics simulations.
    Rems L; Tarek M; Casciola M; Miklavčič D
    Bioelectrochemistry; 2016 Dec; 112():112-24. PubMed ID: 27091314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Negative effect of nanoconfinement on water transport across nanotube membranes.
    Zhao K; Wu H; Han B
    J Chem Phys; 2017 Oct; 147(16):164705. PubMed ID: 29096476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.