BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31682406)

  • 1. Additive Manufacturing of Bioactive Poly(trimethylene carbonate)/β-Tricalcium Phosphate Composites for Bone Regeneration.
    Dienel KEG; van Bochove B; Seppälä JV
    Biomacromolecules; 2020 Feb; 21(2):366-375. PubMed ID: 31682406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between calcium carbonate and β-tricalcium phosphate as additives of 3D printed scaffolds with polylactic acid matrix.
    Donate R; Monzón M; Ortega Z; Wang L; Ribeiro V; Pestana D; Oliveira JM; Reis RL
    J Tissue Eng Regen Med; 2020 Feb; 14(2):272-283. PubMed ID: 31733089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration.
    Schmidleithner C; Malferrari S; Palgrave R; Bomze D; Schwentenwein M; Kalaskar DM
    Biomed Mater; 2019 Jun; 14(4):045018. PubMed ID: 31170697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of Designed Poly(trimethylene carbonate) Meniscus Implants by Stereolithography: Challenges in Stereolithography.
    van Bochove B; Hannink G; Buma P; Grijpma DW
    Macromol Biosci; 2016 Dec; 16(12):1853-1863. PubMed ID: 27748548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering.
    Yang K; Zhang J; Ma X; Ma Y; Kan C; Ma H; Li Y; Yuan Y; Liu C
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():37-47. PubMed ID: 26249563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold.
    Cao L; Duan PG; Wang HR; Li XL; Yuan FL; Fan ZY; Li SM; Dong J
    Int J Nanomedicine; 2012; 7():5881-8. PubMed ID: 23226019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation.
    Flauder S; Sajzew R; Müller FA
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):845-51. PubMed ID: 25474730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D porous Ti6Al4V-beta-tricalcium phosphate scaffolds directly fabricated by additive manufacturing.
    Li J; Yuan H; Chandrakar A; Moroni L; Habibovic P
    Acta Biomater; 2021 May; 126():496-510. PubMed ID: 33727193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of gelatin based porous biocomposite for bone tissue engineering and evaluation of gamma irradiation effect on its properties.
    Islam MM; Khan MA; Rahman MM
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():648-655. PubMed ID: 25686994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of poly (trimethylene carbonate)/reduced graphene oxide-graft-poly (trimethylene carbonate) composite scaffolds for nerve regeneration.
    Guo Z; Liang J; Poot AA; Grijpma DW; Chen H
    Biomed Mater; 2019 Feb; 14(2):024104. PubMed ID: 30665200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and characterization of dextran/nanocrystalline β-tricalcium phosphate nanocomposite hydrogel scaffolds.
    Ghaffari R; Salimi-Kenari H; Fahimipour F; Rabiee SM; Adeli H; Dashtimoghadam E
    Int J Biol Macromol; 2020 Apr; 148():434-448. PubMed ID: 31953173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible and elastic scaffolds for cartilage tissue engineering prepared by stereolithography using poly(trimethylene carbonate)-based resins.
    Schüller-Ravoo S; Teixeira SM; Feijen J; Grijpma DW; Poot AA
    Macromol Biosci; 2013 Dec; 13(12):1711-9. PubMed ID: 24214105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D-Printed scaffolds based on poly(Trimethylene carbonate), poly(ε-Caprolactone), and β-Tricalcium phosphate.
    Zheng SY; Liu ZW; Kang HL; Liu F; Yan GP; Li F
    Int J Bioprint; 2023; 9(1):641. PubMed ID: 36636134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocompatible and biodegradable scaffold based on polytrimethylene carbonate-tricalcium phosphate microspheres for tissue engineering.
    He J; Lin Z; Hu X; Xing L; Liang G; Chen D; An J; Xiong C; Zhang X; Zhang L
    Colloids Surf B Biointerfaces; 2021 Aug; 204():111808. PubMed ID: 33971613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro and in vivo biocompatibility of calcium-phosphate scaffolds three-dimensional printed by stereolithography for bone regeneration.
    Le Guéhennec L; Van Hede D; Plougonven E; Nolens G; Verlée B; De Pauw MC; Lambert F
    J Biomed Mater Res A; 2020 Mar; 108(3):412-425. PubMed ID: 31654476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration.
    He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J
    Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(trimethylene carbonate)-based composite materials for reconstruction of critical-sized cranial bone defects in sheep.
    Zeng N; van Leeuwen AC; Grijpma DW; Bos RR; Kuijer R
    J Craniomaxillofac Surg; 2017 Feb; 45(2):338-346. PubMed ID: 28108237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.