These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 31682455)
41. Reconfiguring Organic Color Centers on the sp Qu H; Wu X; Fortner J; Kim M; Wang P; Wang Y ACS Nano; 2022 Feb; 16(2):2077-2087. PubMed ID: 35040631 [TBL] [Abstract][Full Text] [Related]
42. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics. Amori AR; Hou Z; Krauss TD Annu Rev Phys Chem; 2018 Apr; 69():81-99. PubMed ID: 29401037 [TBL] [Abstract][Full Text] [Related]
43. Correlation Measurements for Carbon Nanotubes with Quantum Defects. Li MK; Dehm S; Kappes MM; Hennrich F; Krupke R ACS Nano; 2024 Apr; 18(13):9525-9534. PubMed ID: 38513118 [TBL] [Abstract][Full Text] [Related]
44. Formation of organic color centers in air-suspended carbon nanotubes using vapor-phase reaction. Kozawa D; Wu X; Ishii A; Fortner J; Otsuka K; Xiang R; Inoue T; Maruyama S; Wang Y; Kato YK Nat Commun; 2022 May; 13(1):2814. PubMed ID: 35595760 [TBL] [Abstract][Full Text] [Related]
45. Programming sp Wu X; Kim M; Wang LJ; Veetil AK; Wang Y J Am Chem Soc; 2024 Apr; 146(13):8826-8831. PubMed ID: 38526163 [TBL] [Abstract][Full Text] [Related]
46. Carbene-functionalized single-walled carbon nanotubes and their electrical properties. Liu C; Zhang Q; Stellacci F; Marzari N; Zheng L; Zhan Z Small; 2011 May; 7(9):1257-63. PubMed ID: 21485006 [TBL] [Abstract][Full Text] [Related]
47. Relative ordering between bright and dark excitons in single-walled carbon nanotubes. Zhou W; Nakamura D; Liu H; Kataura H; Takeyama S Sci Rep; 2014 Nov; 4():6999. PubMed ID: 25385545 [TBL] [Abstract][Full Text] [Related]
48. Salinity-dependent toxicity of water-dispersible, single-walled carbon nanotubes to Japanese medaka embryos. Kataoka C; Nakahara K; Shimizu K; Kowase S; Nagasaka S; Ifuku S; Kashiwada S J Appl Toxicol; 2017 Apr; 37(4):408-416. PubMed ID: 27534384 [TBL] [Abstract][Full Text] [Related]
49. Influences of Exciton Diffusion and Exciton-Exciton Annihilation on Photon Emission Statistics of Carbon Nanotubes. Ma X; Roslyak O; Duque JG; Pang X; Doorn SK; Piryatinski A; Dunlap DH; Htoon H Phys Rev Lett; 2015 Jul; 115(1):017401. PubMed ID: 26182119 [TBL] [Abstract][Full Text] [Related]
50. Bright and dark excitons in semiconductor carbon nanotubes: insights from electronic structure calculations. Kilina S; Badaeva E; Piryatinski A; Tretiak S; Saxena A; Bishop AR Phys Chem Chem Phys; 2009 Jun; 11(21):4113-23. PubMed ID: 19458812 [TBL] [Abstract][Full Text] [Related]
51. Exciton relaxation in carbon nanotubes via electronic-to-vibrational energy transfer. Velizhanin KA J Chem Phys; 2019 Oct; 151(14):144703. PubMed ID: 31615218 [TBL] [Abstract][Full Text] [Related]
52. Functionalization effects of single-walled carbon nanotubes as templates for the synthesis of silica nanorods and study of growing mechanism of silica. Lee KG; Wi R; Imran M; Park TJ; Lee J; Lee SY; Kim DH ACS Nano; 2010 Jul; 4(7):3933-42. PubMed ID: 20536251 [TBL] [Abstract][Full Text] [Related]
53. Broken Symmetry Optical Transitions in (6,5) Single-Walled Carbon Nanotubes Containing Trerayapiwat KJ; Li X; Ma X; Sharifzadeh S Nano Lett; 2024 Jan; 24(2):667-671. PubMed ID: 38174941 [TBL] [Abstract][Full Text] [Related]
54. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals. Kanemitsu Y Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584 [TBL] [Abstract][Full Text] [Related]