These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31682568)

  • 1. A Computational Role for Top-Down Modulation from Frontal Cortex in Infancy.
    Jaffe-Dax S; Boldin AM; Daw ND; Emberson LL
    J Cogn Neurosci; 2020 Mar; 32(3):508-514. PubMed ID: 31682568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The emergence of top-down, sensory prediction during learning in infancy: A comparison of full-term and preterm infants.
    Boldin AM; Geiger R; Emberson LL
    Dev Psychobiol; 2018 Jul; 60(5):544-556. PubMed ID: 29687654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionally segregated neural substrates for arbitrary audiovisual paired-association learning.
    Tanabe HC; Honda M; Sadato N
    J Neurosci; 2005 Jul; 25(27):6409-18. PubMed ID: 16000632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deficits in Top-Down Sensory Prediction in Infants At Risk due to Premature Birth.
    Emberson LL; Boldin AM; Riccio JE; Guillet R; Aslin RN
    Curr Biol; 2017 Feb; 27(3):431-436. PubMed ID: 28132814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Holistic function of the "associative" suprasylvian cortex in cats.
    Psatta DM; Constantinescu CA
    Neurol Psychiatr (Bucur); 1981; 19(4):267-82. PubMed ID: 7344066
    [No Abstract]   [Full Text] [Related]  

  • 6. Modeling fast stimulus-response association learning along the occipito-parieto-frontal pathway following rule instructions.
    Bugmann G
    Brain Res; 2012 Jan; 1434():73-89. PubMed ID: 22041227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On certain aspects of the localization of the cerebral systems regulating and determining emotion.
    Flor-Henry P
    Biol Psychiatry; 1979 Aug; 14(4):677-98. PubMed ID: 226189
    [No Abstract]   [Full Text] [Related]  

  • 8. Using fNIRS to examine occipital and temporal responses to stimulus repetition in young infants: Evidence of selective frontal cortex involvement.
    Emberson LL; Cannon G; Palmeri H; Richards JE; Aslin RN
    Dev Cogn Neurosci; 2017 Feb; 23():26-38. PubMed ID: 28012401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociable Fronto-Operculum-Insula Control Signals for Anticipation and Detection of Inhibitory Sensory Cue.
    Cai W; Chen T; Ide JS; Li CR; Menon V
    Cereb Cortex; 2017 Aug; 27(8):4073-4082. PubMed ID: 27473319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional connectivity during top-down modulation of visual short-term memory representations.
    Kuo BC; Yeh YY; Chen AJ; D'Esposito M
    Neuropsychologia; 2011 May; 49(6):1589-96. PubMed ID: 21241721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The origins of cortical multisensory dynamics: Evidence from human infants.
    Werchan DM; Baumgartner HA; Lewkowicz DJ; Amso D
    Dev Cogn Neurosci; 2018 Nov; 34():75-81. PubMed ID: 30099263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Spatial synchronization of biopotentials in the temporal zones of the brain upon presentation of verbal signals to young children].
    Zaĭtseva LM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1974; 24(4):766-74. PubMed ID: 4450786
    [No Abstract]   [Full Text] [Related]  

  • 13. [The relationship between the inferior parietal association areas of the brain and speech perception in children].
    Khrizman TP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1974; 24(4):758-65. PubMed ID: 4450785
    [No Abstract]   [Full Text] [Related]  

  • 14. Predictions Shape Confidence in Right Inferior Frontal Gyrus.
    Sherman MT; Seth AK; Kanai R
    J Neurosci; 2016 Oct; 36(40):10323-10336. PubMed ID: 27707969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory--visual interaction in single cells in the cortex of the superior temporal sulcus and the orbital frontal cortex of the macaque monkey.
    Benevento LA; Fallon J; Davis BJ; Rezak M
    Exp Neurol; 1977 Dec; 57(3):849-72. PubMed ID: 411682
    [No Abstract]   [Full Text] [Related]  

  • 16. Predictive codes for forthcoming perception in the frontal cortex.
    Summerfield C; Egner T; Greene M; Koechlin E; Mangels J; Hirsch J
    Science; 2006 Nov; 314(5803):1311-4. PubMed ID: 17124325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Top-down control of visual cortex by the frontal eye fields through oscillatory realignment.
    Veniero D; Gross J; Morand S; Duecker F; Sack AT; Thut G
    Nat Commun; 2021 Mar; 12(1):1757. PubMed ID: 33741947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of neocortical association structures in the spatiotemporal organization of brain potentials in children during perception of sensory stimuli of different modalities.
    Khrizman TP; Zaitseva LM
    Hum Physiol; 1978; 4(4):538-45. PubMed ID: 753728
    [No Abstract]   [Full Text] [Related]  

  • 19. Auditory and visual connectivity gradients in frontoparietal cortex.
    Braga RM; Hellyer PJ; Wise RJ; Leech R
    Hum Brain Mapp; 2017 Jan; 38(1):255-270. PubMed ID: 27571304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferior-frontal cortex phase synchronizes with the temporal-parietal junction prior to successful change detection.
    Micheli C; Kaping D; Westendorff S; Valiante TA; Womelsdorf T
    Neuroimage; 2015 Oct; 119():417-31. PubMed ID: 26119023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.