These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 31682601)

  • 41. Cynipid galls on oak leaves are resilient to leaf vein disruption.
    Giertych MJ; Łukowski A; Karolewski P
    J Plant Res; 2023 Jul; 136(4):527-534. PubMed ID: 37133571
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gall structure affects ecological associations of Dryocosmus kuriphilus (Hymenoptera: Cynipidae).
    Cooper WR; Rieske LK
    Environ Entomol; 2010 Jun; 39(3):787-97. PubMed ID: 20550791
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phenotypic plasticity and similarity among gall morphotypes on a superhost, Baccharis reticularia (Asteraceae).
    Formiga AT; Silveira FA; Fernandes GW; Isaias RM
    Plant Biol (Stuttg); 2015 Mar; 17(2):512-21. PubMed ID: 25124804
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Latitudinal gradient in species diversity provides high niche opportunities for a range-expanding phytophagous insect.
    Jones DG; Kobelt J; Ross JM; Powell THQ; Prior KM
    J Anim Ecol; 2022 Oct; 91(10):2037-2049. PubMed ID: 35945806
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transcriptome analysis in oak uncovers a strong impact of endogenous rhythmic growth on the interaction with plant-parasitic nematodes.
    Maboreke HR; Feldhahn L; Bönn M; Tarkka MT; Buscot F; Herrmann S; Menzel R; Ruess L
    BMC Genomics; 2016 Aug; 17(1):627. PubMed ID: 27520023
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Benefits of photosynthesis for insects in galls.
    Haiden SA; Hoffmann JH; Cramer MD
    Oecologia; 2012 Dec; 170(4):987-97. PubMed ID: 22622876
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Parallel patterns of morphological and behavioral variation among host-associated populations of two gall wasp species.
    Egan SP; Hood GR; DeVela G; Ott JR
    PLoS One; 2013; 8(1):e54690. PubMed ID: 23349952
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcriptome profile of cup-shaped galls in Litsea acuminata leaves.
    Shih TH; Lin SH; Huang MY; Sun CW; Yang CM
    PLoS One; 2018; 13(10):e0205265. PubMed ID: 30356295
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Phytohormones and willow gall induction by a gall-inducing sawfly.
    Yamaguchi H; Tanaka H; Hasegawa M; Tokuda M; Asami T; Suzuki Y
    New Phytol; 2012 Oct; 196(2):586-595. PubMed ID: 22913630
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular and Histologic Adaptation of Horned Gall Induced by the Aphid
    Lu Q; Chen X; Yang Z; Bashir NH; Liu J; Cui Y; Shao S; Chen MS; Chen H
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068250
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oak gall wasp infections of Quercus robur leaves lead to profound modifications in foliage photosynthetic and volatile emission characteristics.
    Jiang Y; Veromann-Jürgenson LL; Ye J; Niinemets Ü
    Plant Cell Environ; 2018 Jan; 41(1):160-175. PubMed ID: 28776716
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ecology: Plant Parasites Victimized by a Parasitic Plant.
    Weis AE
    Curr Biol; 2018 Aug; 28(16):R877-R879. PubMed ID: 30130508
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fossil oak galls preserve ancient multitrophic interactions.
    Stone GN; van der Ham RW; Brewer JG
    Proc Biol Sci; 2008 Oct; 275(1648):2213-9. PubMed ID: 18559323
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differences in Monoterpene Biosynthesis and Accumulation in Pistacia palaestina Leaves and Aphid-Induced Galls.
    Rand K; Bar E; Ari MB; Davidovich-Rikanati R; Dudareva N; Inbar M; Lewinsohn E
    J Chem Ecol; 2017 Feb; 43(2):143-152. PubMed ID: 28108840
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two new oak gall wasp species (Hymenoptera: Cynipidae, Cynipini) from Quercus pontica (Fagaceae) in Turkey.
    Azmaz M; Katilmi Y
    Zootaxa; 2021 Aug; 5016(3):382-394. PubMed ID: 34810442
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular Changes Concomitant with Vascular System Development in Mature Galls Induced by Root-Knot Nematodes in the Model Tree Host
    Baldacci-Cresp F; Behr M; Kohler A; Badalato N; Morreel K; Goeminne G; Mol A; de Almeida Engler J; Boerjan W; El Jaziri M; Baucher M
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936440
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A novel family of secreted insect proteins linked to plant gall development.
    Korgaonkar A; Han C; Lemire AL; Siwanowicz I; Bennouna D; Kopec RE; Andolfatto P; Shigenobu S; Stern DL
    Curr Biol; 2021 May; 31(9):1836-1849.e12. PubMed ID: 33657407
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former?
    Hartley SE
    Oecologia; 1998 Feb; 113(4):492-501. PubMed ID: 28308028
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synchronism between Aspidosperma macrocarpon (Apocynaceae) resources allocation and the establishment of the gall inducer Pseudophacopteron sp. (Hemiptera: Psylloidea).
    Castro AC; Oliveira DC; Moreira AS; lsaias RM
    Rev Biol Trop; 2013 Dec; 61(4):1891-900. PubMed ID: 24432541
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Complex meristematic activity induced by Eucecidoses minutanus on Schinus engleri turns shoots into galls.
    Ferreira BG; Moreira GRP; Carneiro RGS; Isaias RMS
    Am J Bot; 2022 Feb; 109(2):209-225. PubMed ID: 34730229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.