These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 31682808)
1. Hox13 is essential for formation of a sensory organ at the terminal end of the sperm duct in Ciona. Tajima Y; Hozumi A; Yoshida K; Treen N; Sakuma T; Yamamoto T; Sasakura Y Dev Biol; 2020 Feb; 458(1):120-131. PubMed ID: 31682808 [TBL] [Abstract][Full Text] [Related]
2. Ordered expression pattern of Hox and ParaHox genes along the alimentary canal in the ascidian juvenile. Nakayama S; Satou K; Orito W; Ogasawara M Cell Tissue Res; 2016 Jul; 365(1):65-75. PubMed ID: 26837224 [TBL] [Abstract][Full Text] [Related]
3. Ciona intestinalis Hox gene cluster: Its dispersed structure and residual colinear expression in development. Ikuta T; Yoshida N; Satoh N; Saiga H Proc Natl Acad Sci U S A; 2004 Oct; 101(42):15118-23. PubMed ID: 15469921 [TBL] [Abstract][Full Text] [Related]
4. A genomewide survey of developmentally relevant genes in Ciona intestinalis. II. Genes for homeobox transcription factors. Wada S; Tokuoka M; Shoguchi E; Kobayashi K; Di Gregorio A; Spagnuolo A; Branno M; Kohara Y; Rokhsar D; Levine M; Saiga H; Satoh N; Satou Y Dev Genes Evol; 2003 Jun; 213(5-6):222-34. PubMed ID: 12736825 [TBL] [Abstract][Full Text] [Related]
5. Embryonic expression profiles and conserved localization mechanisms of pem/postplasmic mRNAs of two species of ascidian, Ciona intestinalis and Ciona savignyi. Yamada L Dev Biol; 2006 Aug; 296(2):524-36. PubMed ID: 16797000 [TBL] [Abstract][Full Text] [Related]
6. Transposon-mediated enhancer detection reveals the location, morphology and development of the cupular organs, which are putative hydrodynamic sensors, in the ascidian Ciona intestinalis. Ohta N; Horie T; Satoh N; Sasakura Y Zoolog Sci; 2010 Nov; 27(11):842-50. PubMed ID: 21039122 [TBL] [Abstract][Full Text] [Related]
7. Gene expression profiles in Ciona intestinalis stigmatal cells: insight into formation of the ascidian branchial fissures. Shimazaki A; Sakai A; Ogasawara M Dev Dyn; 2006 Feb; 235(2):562-9. PubMed ID: 16342199 [TBL] [Abstract][Full Text] [Related]
8. Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus. Gissi C; Pesole G; Cattaneo E; Tartari M BMC Genomics; 2006 Nov; 7():288. PubMed ID: 17092333 [TBL] [Abstract][Full Text] [Related]
9. Limited functions of Hox genes in the larval development of the ascidian Ciona intestinalis. Ikuta T; Satoh N; Saiga H Development; 2010 May; 137(9):1505-13. PubMed ID: 20335361 [TBL] [Abstract][Full Text] [Related]
10. AMPA glutamate receptors are required for sensory-organ formation and morphogenesis in the basal chordate. Hirai S; Hotta K; Kubo Y; Nishino A; Okabe S; Okamura Y; Okado H Proc Natl Acad Sci U S A; 2017 Apr; 114(15):3939-3944. PubMed ID: 28348228 [TBL] [Abstract][Full Text] [Related]
11. Amphioxus and ascidian Dmbx homeobox genes give clues to the vertebrate origins of midbrain development. Takahashi T; Holland PW Development; 2004 Jul; 131(14):3285-94. PubMed ID: 15201221 [TBL] [Abstract][Full Text] [Related]
12. The ascidian homolog of the vertebrate homeobox gene Rx is essential for ocellus development and function. D'Aniello S; D'Aniello E; Locascio A; Memoli A; Corrado M; Russo MT; Aniello F; Fucci L; Brown ER; Branno M Differentiation; 2006 Jun; 74(5):222-34. PubMed ID: 16759288 [TBL] [Abstract][Full Text] [Related]
13. The dopamine-synthesizing cells in the swimming larva of the tunicate Ciona intestinalis are located only in the hypothalamus-related domain of the sensory vesicle. Moret F; Christiaen L; Deyts C; Blin M; Joly JS; Vernier P Eur J Neurosci; 2005 Jun; 21(11):3043-55. PubMed ID: 15978015 [TBL] [Abstract][Full Text] [Related]
14. Comparative genomics identifies a cis-regulatory module that activates transcription in specific subsets of neurons in Ciona intestinalis larvae. Yoshida R; Horie T; Tsuda M; Kusakabe TG Dev Growth Differ; 2007 Oct; 49(8):657-67. PubMed ID: 17711474 [TBL] [Abstract][Full Text] [Related]
15. Six novel gonadotropin-releasing hormones are encoded as triplets on each of two genes in the protochordate, Ciona intestinalis. Adams BA; Tello JA; Erchegyi J; Warby C; Hong DJ; Akinsanya KO; Mackie GO; Vale W; Rivier JE; Sherwood NM Endocrinology; 2003 May; 144(5):1907-19. PubMed ID: 12697698 [TBL] [Abstract][Full Text] [Related]
16. Genomics and developmental approaches to an ascidian adenohypophysis primordium. Kano S Integr Comp Biol; 2010 Jul; 50(1):35-52. PubMed ID: 21558186 [TBL] [Abstract][Full Text] [Related]
17. Genome Editing of the Ascidian Ciona intestinalis with TALE Nuclease. Sasakura Y; Yoshida K; Treen N Methods Mol Biol; 2017; 1630():235-245. PubMed ID: 28643263 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the Transcription Regulatory Mechanism of Otx During the Development of the Sensory Vesicle in Ciona intestinalis. Oonuma K; Hirose D; Takatori N; Saiga H Zoolog Sci; 2014 Sep; 31(9):565-72. PubMed ID: 25186927 [TBL] [Abstract][Full Text] [Related]
19. Spatio-temporal regulation of Rx and mitotic patterns shape the eye-cup of the photoreceptor cells in Ciona. Oonuma K; Kusakabe TG Dev Biol; 2019 Jan; 445(2):245-255. PubMed ID: 30502325 [TBL] [Abstract][Full Text] [Related]
20. Unusual number and genomic organization of Hox genes in the tunicate Ciona intestinalis. Spagnuolo A; Ristoratore F; Di Gregorio A; Aniello F; Branno M; Di Lauro R Gene; 2003 May; 309(2):71-9. PubMed ID: 12758123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]