BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31682896)

  • 21. Exosomes are involved in iron transport from human blood-brain barrier endothelial cells and are modified by endothelial cell iron status.
    Palsa K; Baringer SL; Shenoy G; Spiegelman VS; Simpson IA; Connor JR
    J Biol Chem; 2023 Feb; 299(2):102868. PubMed ID: 36603765
    [TBL] [Abstract][Full Text] [Related]  

  • 22.
    Malhotra H; Patidar A; Boradia VM; Kumar R; Nimbalkar RD; Kumar A; Gani Z; Kaur R; Garg P; Raje M; Raje CI
    Front Cell Infect Microbiol; 2017; 7():245. PubMed ID: 28642848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Varying iron release from transferrin and lactoferrin proteins. A laboratory experiment.
    Carmona F; González A; Sánchez M; Gálvez N; Cuesta R; Capdevila M; Dominguez-Vera JM
    Biochem Mol Biol Educ; 2017 Nov; 45(6):521-527. PubMed ID: 28670831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lactoferrin protects against iron dysregulation, oxidative stress, and apoptosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease in mice.
    Liu H; Wu H; Zhu N; Xu Z; Wang Y; Qu Y; Wang J
    J Neurochem; 2020 Feb; 152(3):397-415. PubMed ID: 31442326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. "Dilysine trigger" in transferrins probed by mutagenesis of lactoferrin: crystal structures of the R210G, R210E, and R210L mutants of human lactoferrin.
    Peterson NA; Arcus VL; Anderson BF; Tweedie JW; Jameson GB; Baker EN
    Biochemistry; 2002 Dec; 41(48):14167-75. PubMed ID: 12450380
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and functional insights into iron acquisition from lactoferrin and transferrin in Gram-negative bacterial pathogens.
    Chan C; Ng D; Fraser ME; Schryvers AB
    Biometals; 2023 Jun; 36(3):683-702. PubMed ID: 36418809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transferrin and transferrin receptor function in brain barrier systems.
    Moos T; Morgan EH
    Cell Mol Neurobiol; 2000 Feb; 20(1):77-95. PubMed ID: 10690503
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier.
    Qiao R; Jia Q; Hüwel S; Xia R; Liu T; Gao F; Galla HJ; Gao M
    ACS Nano; 2012 Apr; 6(4):3304-10. PubMed ID: 22443607
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lactoferrin ameliorates dopaminergic neurodegeneration and motor deficits in MPTP-treated mice.
    Xu SF; Zhang YH; Wang S; Pang ZQ; Fan YG; Li JY; Wang ZY; Guo C
    Redox Biol; 2019 Feb; 21():101090. PubMed ID: 30593976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for a different mechanism of lactoferrin and transferrin translocation on HT 29-D4 cells.
    Roiron-Lagroux D; Figarella C
    Biochem Biophys Res Commun; 1990 Jul; 170(2):837-42. PubMed ID: 2166510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantification of kinetic rate constants for transcytosis of polymeric nanoparticle through blood-brain barrier.
    Khan AI; Lu Q; Du D; Lin Y; Dutta P
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2779-2787. PubMed ID: 30251666
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel model for brain iron uptake: introducing the concept of regulation.
    Simpson IA; Ponnuru P; Klinger ME; Myers RL; Devraj K; Coe CL; Lubach GR; Carruthers A; Connor JR
    J Cereb Blood Flow Metab; 2015 Jan; 35(1):48-57. PubMed ID: 25315861
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparative, cross-species investigation of the properties and roles of transferrin- and lactoferrin-binding protein B from pathogenic bacteria.
    Ostan N; Morgenthau A; Yu RH; Gray-Owen SD; Schryvers AB
    Biochem Cell Biol; 2017 Feb; 95(1):5-11. PubMed ID: 28129513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultrastructural aspects of iron storage, transport and metabolism.
    Iancu TC
    J Neural Transm (Vienna); 2011 Mar; 118(3):329-35. PubMed ID: 21318635
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The role of lactoferrin in the iron metabolism. Part I. Effect of lactofferin on intake, transport and iron storage].
    Artym J
    Postepy Hig Med Dosw (Online); 2008 Nov; 62():599-612. PubMed ID: 19002083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor-mediated transcytosis through the blood-brain barrier of blood-borne transferrin and antibody against the transferrin receptor.
    Broadwell RD; Baker-Cairns BJ; Friden PM; Oliver C; Villegas JC
    Exp Neurol; 1996 Nov; 142(1):47-65. PubMed ID: 8912898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The proton permeability of self-assembled polymersomes and their neuroprotection by enhancing a neuroprotective peptide across the blood-brain barrier after modification with lactoferrin.
    Yu Y; Jiang X; Gong S; Feng L; Zhong Y; Pang Z
    Nanoscale; 2014 Mar; 6(6):3250-8. PubMed ID: 24503971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amonabactin-mediated iron acquisition from transferrin and lactoferrin by Aeromonas hydrophila: direct measurement of individual microscopic rate constants.
    Stintzi A; Raymond KN
    J Biol Inorg Chem; 2000 Feb; 5(1):57-66. PubMed ID: 10766437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lactoferrin-modified procationic liposomes as a novel drug carrier for brain delivery.
    Chen H; Tang L; Qin Y; Yin Y; Tang J; Tang W; Sun X; Zhang Z; Liu J; He Q
    Eur J Pharm Sci; 2010 May; 40(2):94-102. PubMed ID: 20298779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression of Iron-Related Proteins at the Neurovascular Unit Supports Reduction and Reoxidation of Iron for Transport Through the Blood-Brain Barrier.
    Burkhart A; Skjørringe T; Johnsen KB; Siupka P; Thomsen LB; Nielsen MS; Thomsen LL; Moos T
    Mol Neurobiol; 2016 Dec; 53(10):7237-7253. PubMed ID: 26687231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.