These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 31683151)
1. Corn silk extract inhibit the formation of N Zhang D; Wang Y; Liu H Food Chem; 2020 Mar; 309():125708. PubMed ID: 31683151 [TBL] [Abstract][Full Text] [Related]
2. Baijiu Vinasse Extract Scavenges Glyoxal and Inhibits the Formation of Wang Y; Liu H; Zhang D; Liu J; Wang J; Wang S; Sun B Molecules; 2019 Apr; 24(8):. PubMed ID: 31003408 [TBL] [Abstract][Full Text] [Related]
3. Hydroxyl radical induced by lipid in Maillard reaction model system promotes diet-derived N(ε)-carboxymethyllysine formation. Han L; Li L; Li B; Zhao D; Li Y; Xu Z; Liu G Food Chem Toxicol; 2013 Oct; 60():536-41. PubMed ID: 23959106 [TBL] [Abstract][Full Text] [Related]
4. Flavonoids with antioxidant and tyrosinase inhibitory activity from corn silk ( Wang JY; Zhou WY; Huang XX; Song SJ Nat Prod Res; 2023 Mar; 37(5):835-839. PubMed ID: 35736954 [TBL] [Abstract][Full Text] [Related]
5. Potential Photoprotective Effect of Dietary Corn Silk Extract on Ultraviolet B-Induced Skin Damage. Kim YH; Cho A; Kwon SA; Kim M; Song M; Han HW; Shin EJ; Park E; Lee SM Molecules; 2019 Jul; 24(14):. PubMed ID: 31315278 [TBL] [Abstract][Full Text] [Related]
6. Comparative studies on the constituents, antioxidant and anticancer activities of extracts from different varieties of corn silk. Tian J; Chen H; Chen S; Xing L; Wang Y; Wang J Food Funct; 2013 Oct; 4(10):1526-34. PubMed ID: 24056502 [TBL] [Abstract][Full Text] [Related]
7. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System. Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Sabiu S; O'Neill FH; Ashafa AOT J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829 [TBL] [Abstract][Full Text] [Related]
9. Formation of N(epsilon)-(carboxymethyl)lysine and loss of lysine in casein glucose-fatty acid model systems. Lima M; Assar SH; Ames JM J Agric Food Chem; 2010 Feb; 58(3):1954-8. PubMed ID: 20030411 [TBL] [Abstract][Full Text] [Related]
10. Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Wang KJ; Zhao JL Biomed Pharmacother; 2019 Feb; 110():510-517. PubMed ID: 30530231 [TBL] [Abstract][Full Text] [Related]
11. Effects of Highland Barley Bran Extract Rich in Phenolic Acids on the Formation of N Liu H; Chen X; Zhang D; Wang J; Wang S; Sun B J Agric Food Chem; 2018 Feb; 66(8):1916-1922. PubMed ID: 29414239 [TBL] [Abstract][Full Text] [Related]
12. UPLC-ESI-QTOF-MS²-Based Identification and Antioxidant Activity Assessment of Phenolic Compounds from Red Corn Cob ( Hernández M; Ventura J; Castro C; Boone V; Rojas R; Ascacio-Valdés J; Martínez-Ávila G Molecules; 2018 Jun; 23(6):. PubMed ID: 29895792 [TBL] [Abstract][Full Text] [Related]
13. Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.). El-Ghorab A; El-Massry KF; Shibamoto T J Agric Food Chem; 2007 Oct; 55(22):9124-7. PubMed ID: 17914872 [TBL] [Abstract][Full Text] [Related]
14. Optimizing extraction conditions and isolation of bound phenolic compounds from corn silk (Stigma maydis) and their antioxidant effects. Khan U; Hayat F; Khanum F; Shao Y; Iqbal S; Munir S; Abdin M; Li L; Ahmad RM; Qiu J; Xin Z J Food Sci; 2023 Aug; 88(8):3341-3356. PubMed ID: 37421346 [TBL] [Abstract][Full Text] [Related]
15. Extraction technology, component analysis, and in vitro antioxidant and antibacterial activities of total flavonoids and fatty acids from Tribulus terrestris L. fruits. Tian C; Zhang Z; Wang H; Guo Y; Zhao J; Liu M Biomed Chromatogr; 2019 Apr; 33(4):e4474. PubMed ID: 30577068 [TBL] [Abstract][Full Text] [Related]
16. Influence of variety and harvest maturity on phytochemical content in corn silk. Sarepoua E; Tangwongchai R; Suriharn B; Lertrat K Food Chem; 2015 Feb; 169():424-9. PubMed ID: 25236247 [TBL] [Abstract][Full Text] [Related]
17. Mechanism of protein modification by glyoxal and glycolaldehyde, reactive intermediates of the Maillard reaction. Glomb MA; Monnier VM J Biol Chem; 1995 Apr; 270(17):10017-26. PubMed ID: 7730303 [TBL] [Abstract][Full Text] [Related]
18. Rapid analysis and characterization of multiple constituents of corn silk aqueous extract using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry. Wang Y; Liu Q; Fan S; Yang X; Ming L; Wang H; Liu J J Sep Sci; 2019 Oct; 42(19):3054-3066. PubMed ID: 31328392 [TBL] [Abstract][Full Text] [Related]
19. Stabilization of Neem Oil Biodiesel with Corn Silk Extract during Long-term Storage. Ali RF; El-Anany AM J Oleo Sci; 2017 Feb; 66(2):133-145. PubMed ID: 28100884 [TBL] [Abstract][Full Text] [Related]
20. Comparison of the Flavonoid Profiles of Corn Silks to Select Efficient Varieties as Trap Plants for Fougère L; Rhino B; Elfakir C; Destandau E J Agric Food Chem; 2020 May; 68(19):5356-5364. PubMed ID: 32302114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]