BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31683263)

  • 1. High-resolution manipulation of gold nanorods with an atomic force microscope.
    Craciun AD; Donnio B; Gallani JL; Rastei MV
    Nanotechnology; 2019 Nov; 31(8):085302. PubMed ID: 31683263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulation of cadmium selenide nanorods with an atomic force microscope.
    Tranvouez E; Orieux A; Boer-Duchemin E; Devillers CH; Huc V; Comtet G; Dujardin G
    Nanotechnology; 2009 Apr; 20(16):165304. PubMed ID: 19420569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active drift compensation applied to nanorod manipulation with an atomic force microscope.
    Tranvouez E; Boer-Duchemin E; Comtet G; Dujardin G
    Rev Sci Instrum; 2007 Nov; 78(11):115103. PubMed ID: 18052500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle-substrate chemistry and morphology, and of operating conditions.
    Darwich S; Mougin K; Rao A; Gnecco E; Jayaraman S; Haidara H
    Beilstein J Nanotechnol; 2011; 2():85-98. PubMed ID: 21977418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic simulation and modeling of the motion modes produced during the 3D controlled manipulation of biological micro/nanoparticles based on the AFM.
    Saraee MB; Korayem MH
    J Theor Biol; 2015 Aug; 378():65-78. PubMed ID: 25953389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope.
    Wagner C; Fournier N; Tautz FS; Temirov R
    Beilstein J Nanotechnol; 2014; 5():202-9. PubMed ID: 24605287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of gold nanoparticles: influence of surface chemistry, temperature, and environment (vacuum versus ambient atmosphere).
    Mougin K; Gnecco E; Rao A; Cuberes MT; Jayaraman S; McFarland EW; Haidara H; Meyer E
    Langmuir; 2008 Feb; 24(4):1577-81. PubMed ID: 18201112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unstable amplitude and noisy image induced by tip contamination in dynamic force mode atomic force microscopy.
    Nie HY; McIntyre NS
    Rev Sci Instrum; 2007 Feb; 78(2):023701. PubMed ID: 17578111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different directional energy dissipation of heterogeneous polymers in bimodal atomic force microscopy.
    Tan X; Guo D; Luo J
    RSC Adv; 2019 Aug; 9(47):27464-27474. PubMed ID: 35529235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope.
    Lange M; van Vörden D; Möller R
    Beilstein J Nanotechnol; 2012; 3():207-12. PubMed ID: 22496993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and manipulation of high aspect ratio gold nanorods grown directly on surfaces.
    Wei Z; Mieszawska AJ; Zamborini FP
    Langmuir; 2004 May; 20(11):4322-6. PubMed ID: 15969133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-plane contributions to phase contrast in intermittent contact atomic force microscopy.
    Marcus MS; Eriksson MA; Sasaki DY; Carpick RW
    Ultramicroscopy; 2003; 97(1-4):145-50. PubMed ID: 12801667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distance-Dependent Measurements of the Conductance of Porphyrin Nanorods Studied with Conductive Probe Atomic Force Microscopy.
    Zhai X; Alexander D; Derosa P; Garno JC
    Langmuir; 2017 Feb; 33(5):1132-1138. PubMed ID: 28081363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of solution concentration, surface bias and protonation on the dynamic response of amplitude-modulated atomic force microscopy in water.
    Wu Y; Gupta C; Shannon MA
    Langmuir; 2008 Oct; 24(19):10817-24. PubMed ID: 18763814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuning Plasmonic Enhancement of Single Nanocrystal Upconversion Luminescence by Varying Gold Nanorod Diameter.
    Xue Y; Ding C; Rong Y; Ma Q; Pan C; Wu E; Wu B; Zeng H
    Small; 2017 Sep; 13(36):. PubMed ID: 28783235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly and wetting properties of gold nanorod-CTAB molecules on HOPG.
    Ahmad I; Derkink F; Boulogne T; Bampoulis P; Zandvliet HJW; Khan HU; Jan R; Kooij ES
    Beilstein J Nanotechnol; 2019; 10():696-705. PubMed ID: 30931211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D investigation of dynamic behavior and sensitivity analysis of the parameters of spherical biological particles in the first phase of AFM-based manipulations with the consideration of humidity effect.
    Korayem MH; Mahmoodi Z; Mohammadi M
    J Theor Biol; 2018 Jan; 436():105-119. PubMed ID: 28941867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manipulation, dissection, and lithography using modified tapping mode atomic force microscope.
    Liu Z; Li Z; Wei G; Song Y; Wang L; Sun L
    Microsc Res Tech; 2006 Dec; 69(12):998-1004. PubMed ID: 16981196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.