These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31683263)

  • 21. A torsional resonance mode AFM for in-plane tip surface interactions.
    Huang L; Su C
    Ultramicroscopy; 2004 Aug; 100(3-4):277-85. PubMed ID: 15231320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic response of AFM cantilevers to dissimilar functionalized silica surfaces in aqueous electrolyte solutions.
    Wu Y; Misra S; Karacor MB; Prakash S; Shannon MA
    Langmuir; 2010 Nov; 26(22):16963-72. PubMed ID: 20949960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modelling the manipulation of C60 on the Si001 surface performed with NC-AFM.
    Martsinovich N; Kantorovich L
    Nanotechnology; 2009 Apr; 20(13):135706. PubMed ID: 19420515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immobilization of gold nanorods onto acid-terminated self-assembled monolayers via electrostatic interactions.
    Gole A; Orendorff CJ; Murphy CJ
    Langmuir; 2004 Aug; 20(17):7117-22. PubMed ID: 15301495
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functionalization of atomic force microscope tips by dielectrophoretic assembly of Gd(2)O(3):Eu(3+) nanorods.
    Macedo AG; Ananias D; André PS; Sá Ferreira RA; Kholkin AL; Carlos LD; Rocha J
    Nanotechnology; 2008 Jul; 19(29):295702. PubMed ID: 21730607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Atomistic simulation of the measurement of mechanical properties of gold nanorods by AFM.
    Reischl B; Rohl AL; Kuronen A; Nordlund K
    Sci Rep; 2017 Nov; 7(1):16257. PubMed ID: 29176635
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative dynamic force microscopy with inclined tip oscillation.
    Rahe P; Heile D; Olbrich R; Reichling M
    Beilstein J Nanotechnol; 2022; 13():610-619. PubMed ID: 35874436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probed adhesion force of living lung cells with a tip-modified atomic force microscope.
    Fu WE; Sivashanmugan K; Liao JD; Lin YY; Cheng KH; Liu BH; Yan JJ; Yeh MH
    Biointerphases; 2016 Dec; 11(4):04B311. PubMed ID: 27998155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Near-field optical imaging of plasmon modes in gold nanorods.
    Imura K; Nagahara T; Okamoto H
    J Chem Phys; 2005 Apr; 122(15):154701. PubMed ID: 15945650
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of the tip state during qPlus noncontact atomic force microscopy of Si(100) at 5 K: Probing the probe.
    Sweetman A; Jarvis S; Danza R; Moriarty P
    Beilstein J Nanotechnol; 2012; 3():25-32. PubMed ID: 22428093
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A nanoscale friction investigation during the manipulation of nanoparticles in controlled environments.
    Palacio M; Bhushan B
    Nanotechnology; 2008 Aug; 19(31):315710. PubMed ID: 21828802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silica-coated gold nanorods with a gold overcoat: controlling optical properties by controlling the dimensions of a gold-silica-gold layered nanoparticle.
    Cong H; Toftegaard R; Arnbjerg J; Ogilby PR
    Langmuir; 2010 Mar; 26(6):4188-95. PubMed ID: 20000431
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulation of bimodal atomic force microscopy.
    Dou Z; Qian J; Li Y; Wang Z; Zhang Y; Lin R; Wang T
    Ultramicroscopy; 2020 May; 212():112971. PubMed ID: 32126474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy dissipation in atomic force microscopy and atomic loss processes.
    Hoffmann PM; Jeffery S; Pethica JB; Ozer HO; Oral A
    Phys Rev Lett; 2001 Dec; 87(26):265502. PubMed ID: 11800839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmonic circular dichroism in side-by-side oligomers of gold nanorods: the influence of chiral molecule location and interparticle distance.
    Hou S; Zhang H; Yan J; Ji Y; Wen T; Liu W; Hu Z; Wu X
    Phys Chem Chem Phys; 2015 Mar; 17(12):8187-93. PubMed ID: 25731142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accuracy of tip-sample interaction measurements using dynamic atomic force microscopy techniques: Dependence on oscillation amplitude, interaction strength, and tip-sample distance.
    Dagdeviren OE; Schwarz UD
    Rev Sci Instrum; 2019 Mar; 90(3):033707. PubMed ID: 30927822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanomachining with a mechanical manipulation system.
    Chang M; Deka JR; Lin CH
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6266-73. PubMed ID: 19205193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amplitude and frequency modulation torsional resonance mode atomic force microscopy of a mineral surface.
    Yurtsever A; Gigler AM; Stark RW
    Ultramicroscopy; 2009 Feb; 109(3):275-9. PubMed ID: 19131169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.
    Kim K; Jeong W; Lee W; Reddy P
    ACS Nano; 2012 May; 6(5):4248-57. PubMed ID: 22530657
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oscillatory forces of nanoparticle suspensions confined between rough surfaces modified with polyelectrolytes via the layer-by-layer technique.
    Zeng Y; von Klitzing R
    Langmuir; 2012 Apr; 28(15):6313-21. PubMed ID: 22420681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.