BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 31683417)

  • 1. Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: A critical review.
    Liu Q; Zhou Y; Lu J; Zhou Y
    Chemosphere; 2020 Feb; 241():125043. PubMed ID: 31683417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oil palm biomass as an adsorbent for heavy metals.
    Vakili M; Rafatullah M; Ibrahim MH; Abdullah AZ; Salamatinia B; Gholami Z
    Rev Environ Contam Toxicol; 2014; 232():61-88. PubMed ID: 24984835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclodextrin-based adsorbents for the removal of pollutants from wastewater: a review.
    Tian B; Hua S; Tian Y; Liu J
    Environ Sci Pollut Res Int; 2021 Jan; 28(2):1317-1340. PubMed ID: 33079345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: A review.
    Leudjo Taka A; Pillay K; Yangkou Mbianda X
    Carbohydr Polym; 2017 Mar; 159():94-107. PubMed ID: 28038758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters.
    Liu X; Lee DJ
    Bioresour Technol; 2014 May; 160():24-31. PubMed ID: 24461254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of polyaniline-based adsorbents for dye removal from water and wastewater-a review.
    Nasar A; Mashkoor F
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5333-5356. PubMed ID: 30612350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of contaminants present in water and wastewater by cyclodextrin-based adsorbents: A bibliometric review from 1993 to 2022.
    Liu C; Crini G; Wilson LD; Balasubramanian P; Li F
    Environ Pollut; 2024 May; 348():123815. PubMed ID: 38508365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater.
    Nguyen TA; Ngo HH; Guo WS; Zhang J; Liang S; Yue QY; Li Q; Nguyen TV
    Bioresour Technol; 2013 Nov; 148():574-85. PubMed ID: 24045220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions; a review.
    Ahmad M; Manzoor K; Ikram S
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):190-203. PubMed ID: 28735891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Zr-MOFs nanocomposites for rapid removal of heavy metal ions and dyes from water.
    Huang L; He M; Chen B; Hu B
    Chemosphere; 2018 May; 199():435-444. PubMed ID: 29453070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review.
    Demirbas A
    J Hazard Mater; 2009 Aug; 167(1-3):1-9. PubMed ID: 19181447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive review on pH and temperature-responsive polymeric adsorbents: Mechanisms, equilibrium, kinetics, and thermodynamics of adsorption processes for heavy metals and organic dyes.
    Khamis F; Hegab HM; Banat F; Arafat HA; Hasan SW
    Chemosphere; 2024 Feb; 349():140801. PubMed ID: 38029934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifunctional β-Cyclodextrin-EDTA-Chitosan polymer adsorbent synthesis for simultaneous removal of heavy metals and organic dyes from wastewater.
    Verma M; Lee I; Hong Y; Kumar V; Kim H
    Environ Pollut; 2022 Jan; 292(Pt B):118447. PubMed ID: 34742823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Selective Conditions on Various Composite Sorbents for Enhanced Removal of Copper (II) Ions from Aqueous Environments.
    Adeeyo RO; Edokpayi JN; Bello OS; Adeeyo AO; Odiyo JO
    Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31756953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Developments in the Removal of Dyes from Water by Starch-Based Adsorbents.
    Ihsanullah I; Bilal M; Jamal A
    Chem Rec; 2022 Jul; 22(7):e202100312. PubMed ID: 35102677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The recent development of inverse vulcanized polysulfide as an alternative adsorbent for heavy metal removal in wastewater.
    Nayeem A; Ali MF; Shariffuddin JH
    Environ Res; 2023 Jan; 216(Pt 1):114306. PubMed ID: 36191616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of date palm as a potential adsorbent for wastewater treatment: a review.
    Ahmad T; Danish M; Rafatullah M; Ghazali A; Sulaiman O; Hashim R; Ibrahim MN
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1464-84. PubMed ID: 22207239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review.
    Burakov AE; Galunin EV; Burakova IV; Kucherova AE; Agarwal S; Tkachev AG; Gupta VK
    Ecotoxicol Environ Saf; 2018 Feb; 148():702-712. PubMed ID: 29174989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyapatite-based adsorbents: Applications in sequestering heavy metals and dyes.
    Amenaghawon AN; Anyalewechi CL; Darmokoesoemo H; Kusuma HS
    J Environ Manage; 2022 Jan; 302(Pt A):113989. PubMed ID: 34710761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances for dyes removal using novel adsorbents: A review.
    Zhou Y; Lu J; Zhou Y; Liu Y
    Environ Pollut; 2019 Sep; 252(Pt A):352-365. PubMed ID: 31158664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.