These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31683453)

  • 21. Enhanced production of raw starch degrading enzyme using agro-industrial waste mixtures by thermotolerant Rhizopus microsporus for raw cassava chip saccharification in ethanol production.
    Trakarnpaiboon S; Srisuk N; Piyachomkwan K; Sakai K; Kitpreechavanich V
    Prep Biochem Biotechnol; 2017 Sep; 47(8):813-823. PubMed ID: 28636431
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct bioethanol production by amylolytic yeast Candida albicans.
    Aruna A; Nagavalli M; Girijashankar V; Ponamgi SP; Swathisree V; Rao LV
    Lett Appl Microbiol; 2015 Mar; 60(3):229-36. PubMed ID: 25348627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production and development of vinegar fermentation from broken Riceberry rice using raw starch-degrading enzyme hydrolysis.
    Sangngern N; Puangnark T; Nguansangiam W; Saithong P; Kitpreechavanich V; Lomthong T
    3 Biotech; 2020 Dec; 10(12):515. PubMed ID: 33194519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct and efficient ethanol production from high-yielding rice using a Saccharomyces cerevisiae strain that express amylases.
    Yamada R; Yamakawa S; Tanaka T; Ogino C; Fukuda H; Kondo A
    Enzyme Microb Technol; 2011 Apr; 48(4-5):393-6. PubMed ID: 22112955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.
    Lee CR; Sung BH; Lim KM; Kim MJ; Sohn MJ; Bae JH; Sohn JH
    Sci Rep; 2017 Jun; 7(1):4428. PubMed ID: 28667330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heterologous production of cellulose- and starch-degrading hydrolases to expand Saccharomyces cerevisiae substrate utilization: Lessons learnt.
    den Haan R; Rose SH; Cripwell RA; Trollope KM; Myburgh MW; Viljoen-Bloom M; van Zyl WH
    Biotechnol Adv; 2021 Dec; 53():107859. PubMed ID: 34678441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective application of immobilized second generation industrial Saccharomyces cerevisiae strain on consolidated bioprocessing.
    Ramos MDN; Sandri JP; Claes A; Carvalho BT; Thevelein JM; Zangirolami TC; Milessi TS
    N Biotechnol; 2023 Dec; 78():153-161. PubMed ID: 37913920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains.
    Davison SA; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8241-54. PubMed ID: 27470141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous saccharification and ethanologenic fermentation (SSF) of waste bread by an amylolytic Parageobacillus thermoglucosidasius strain TM333.
    Ibenegbu CC; Leak DJ
    Microb Cell Fact; 2022 Nov; 21(1):251. PubMed ID: 36443865
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Bioethanol Production from Potato Peel Waste Via Consolidated Bioprocessing with Statistically Optimized Medium.
    Hossain T; Miah AB; Mahmud SA; Mahin AA
    Appl Biochem Biotechnol; 2018 Oct; 186(2):425-442. PubMed ID: 29644595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct ethanol production from starch using a natural isolate, Scheffersomyces shehatae: Toward consolidated bioprocessing.
    Tanimura A; Kikukawa M; Yamaguchi S; Kishino S; Ogawa J; Shima J
    Sci Rep; 2015 Apr; 5():9593. PubMed ID: 25901788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein.
    Khatun MM; Yu X; Kondo A; Bai F; Zhao X
    Bioresour Technol; 2017 Dec; 245(Pt B):1447-1454. PubMed ID: 28554523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Progress and strategies on bioethanol production from lignocellulose by consolidated bioprocessing (CBP) using Saccharomyces cerevisiae].
    Xu L; Shen Y; Bao X
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):870-9. PubMed ID: 20954386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell surface engineering of Saccharomyces cerevisiae combined with membrane separation technology for xylitol production from rice straw hydrolysate.
    Guirimand G; Sasaki K; Inokuma K; Bamba T; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3477-87. PubMed ID: 26631184
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct fermentation of potato starch to ethanol by cocultures of Aspergillus niger and Saccharomyces cerevisiae.
    Abouzied MM; Reddy CA
    Appl Environ Microbiol; 1986 Nov; 52(5):1055-9. PubMed ID: 3539016
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation.
    Li Y; Park JY; Shiroma R; Tokuyasu K
    J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of thermotolerant and ethanol-tolerant
    Kruasuwan W; Puseenam A; Am-In S; Trakarnpaiboon S; Sornlek W; Kocharin K; Jindamorakot S; Tanapongpipat S; Bai FY; Roongsawang N
    3 Biotech; 2023 Jan; 13(1):23. PubMed ID: 36573155
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of Blending Quality Bioethanol from Broken Rice: Optimization of Process Parameters and Kinetic Modeling.
    Mondal P; Sadhukhan AK; Ganguly A; Gupta P
    Appl Biochem Biotechnol; 2022 Nov; 194(11):5474-5505. PubMed ID: 35789986
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of high temperature simultaneous saccharification and fermentation by thermosensitive Saccharomyces cerevisiae and Bacillus amyloliquefaciens.
    Miah R; Siddiqa A; Chakraborty U; Tuli JF; Barman NK; Uddin A; Aziz T; Sharif N; Dey SK; Yamada M; Talukder AA
    Sci Rep; 2022 Mar; 12(1):3630. PubMed ID: 35256663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering natural isolates of Saccharomyces cerevisiae for consolidated bioprocessing of cellulosic feedstocks.
    Minnaar L; den Haan R
    Appl Microbiol Biotechnol; 2023 Nov; 107(22):7013-7028. PubMed ID: 37688599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.