These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31683532)

  • 1. A Novel Method for Classification of Running Fatigue Using Change-Point Segmentation.
    Khan T; Lundgren LE; Järpe E; Olsson MC; Viberg P
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31683532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Muscle Fatigue Classification Model Based on LSTM and Improved Wavelet Packet Threshold.
    Wang J; Sun S; Sun Y
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise.
    Ražanskas P; Verikas A; Olsson C; Viberg PA
    Sensors (Basel); 2015 Aug; 15(8):20480-500. PubMed ID: 26295396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Utility of electromyographic fatigue threshold during treadmill running.
    Crozara LF; Castro A; De Almeida Neto AF; Laroche DP; Cardozo AC; Gonçalves M
    Muscle Nerve; 2015 Dec; 52(6):1030-9. PubMed ID: 25787858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of fatigue on synergy of selected lower limb muscles during running.
    Hajiloo B; Anbarian M; Esmaeili H; Mirzapour M
    J Biomech; 2020 Apr; 103():109692. PubMed ID: 32151383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in myoelectric manifestations of fatigue during isometric muscle actions.
    Gawda P; Ginszt M; Ginszt A; Pawlak H; Majcher P
    Ann Agric Environ Med; 2018 Jun; 25(2):296-299. PubMed ID: 29936808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reproducibility of upper leg EMG frequency content during cycling.
    Bini RR; Hoefelmann CP; Costa VP; Diefenthaeler F
    J Sports Sci; 2018 Mar; 36(5):485-491. PubMed ID: 28423987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of muscular fatigue in elite runners.
    Hanon C; Thépaut-Mathieu C; Vandewalle H
    Eur J Appl Physiol; 2005 May; 94(1-2):118-25. PubMed ID: 15696315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies to identify changes in SEMG due to muscle fatigue during cycling.
    Singh VP; Kumar DK; Polus B; Fraser S
    J Med Eng Technol; 2007; 31(2):144-51. PubMed ID: 17365438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms.
    Karthick PA; Ghosh DM; Ramakrishnan S
    Comput Methods Programs Biomed; 2018 Feb; 154():45-56. PubMed ID: 29249346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel feature modelling the prediction and detection of sEMG muscle fatigue towards an automated wearable system.
    Al-Mulla MR; Sepulveda F
    Sensors (Basel); 2010; 10(5):4838-54. PubMed ID: 22399910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of selective muscle fatigue on sagittal lower limb kinematics and muscle activity during level running.
    Kellis E; Liassou C
    J Orthop Sports Phys Ther; 2009 Mar; 39(3):210-20. PubMed ID: 19252259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Comparative Study of EMG Indices in Muscle Fatigue Evaluation Based on Grey Relational Analysis during All-Out Cycling Exercise.
    Wang L; Wang Y; Ma A; Ma G; Ye Y; Li R; Lu T
    Biomed Res Int; 2018; 2018():9341215. PubMed ID: 29850588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between blood potassium, blood lactate, and electromyography signals related to fatigue in a progressive cycling exercise test.
    Tenan MS; McMurray RG; Blackburn BT; McGrath M; Leppert K
    J Electromyogr Kinesiol; 2011 Feb; 21(1):25-32. PubMed ID: 20934353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EMG spectral indices and muscle power fatigue during dynamic contractions.
    González-Izal M; Malanda A; Navarro-Amézqueta I; Gorostiaga EM; Mallor F; Ibañez J; Izquierdo M
    J Electromyogr Kinesiol; 2010 Apr; 20(2):233-40. PubMed ID: 19406664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variability of Time- and Frequency-Domain Surface Electromyographic Measures in Non-Fatigued Shoulder Muscles.
    Alasim HN; Nimbarte AD
    IISE Trans Occup Ergon Hum Factors; 2022; 10(4):201-212. PubMed ID: 36411999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of surface electromyography recording time interval without muscle fatigue effect for biceps brachii muscle during maximum voluntary contraction.
    Soylu AR; Arpinar-Avsar P
    J Electromyogr Kinesiol; 2010 Aug; 20(4):773-6. PubMed ID: 20211568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute fatigue negatively affects risk factors for injury in trained but not well-trained habitually shod runners when running barefoot.
    Tam N; Coetzee DR; Ahmed S; Lamberts RP; Albertus-Kajee Y; Tucker R
    Eur J Sport Sci; 2017 Oct; 17(9):1220-1229. PubMed ID: 28820647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Super wavelet for sEMG signal extraction during dynamic fatiguing contractions.
    Al-Mulla MR; Sepulveda F
    J Med Syst; 2015 Jan; 39(1):167. PubMed ID: 25526707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of electromyography fatigue threshold in lower limb muscles in trained cyclists and untrained non-cyclists.
    Smirmaul BP; Dantas JL; Fontes EB; Altimari LR; Okano AH; Moraes AC
    Electromyogr Clin Neurophysiol; 2010; 50(3-4):149-54. PubMed ID: 20552949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.