These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 31683621)
1. Effects of the Quenching Rate on the Microstructure, Mechanical Properties and Paint Bake-Hardening Response of Al-Mg-Si Automotive Sheets. Gao G; Li Y; Wang Z; Di H; Li J; Xu G Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31683621 [TBL] [Abstract][Full Text] [Related]
2. Effects of the Mg/Si Ratio on Microstructure, Mechanical Properties, and Precipitation Behavior of Al⁻Mg⁻Si⁻1.0 wt %-Zn Alloys. Li Y; Gao G; Wang Z; Di H; Li J; Xu G Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30572642 [TBL] [Abstract][Full Text] [Related]
3. Influence of Zn and Sn on the Precipitation Behavior of New Al-Mg-Si Alloys. Glöckel F; Uggowitzer PJ; Felfer P; Pogatscher S; Höppel HW Materials (Basel); 2019 Aug; 12(16):. PubMed ID: 31405097 [TBL] [Abstract][Full Text] [Related]
4. Effects of Rapid Quenching on Grain Boundary Microstructure and Mechanical Properties of an Al-Mg-Si-Cu Alloy. Yan Q; Qiu Y; Yang M; Lu Q; Lin H; Yang M; Li K; Du Y Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629898 [TBL] [Abstract][Full Text] [Related]
5. Hardness data related to pre-ageing, natural secondary ageing, and paint bake hardening in Al-Mg-Si alloys. Yang Z; Liang Z; Leyvraz D; Banhart J Data Brief; 2019 Dec; 27():104494. PubMed ID: 31673573 [TBL] [Abstract][Full Text] [Related]
6. Microstructure, Precipitates Behavior, and Mechanical Properties of Age-Hardened Al-Mg-Si Alloy Sheet Fabricated by Twin-Roll Casting. Gao G; Li X; Xiong B; Li Z; Zhang Y; Li Y; Yan L Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013775 [TBL] [Abstract][Full Text] [Related]
8. Influence of Si Addition on Quenching Sensitivity and Formation of Nano-Precipitate in Al-Mg-Si Alloys. Kim J; Hayashi M; Kobayashi E; Sato T J Nanosci Nanotechnol; 2016 Feb; 16(2):1814-7. PubMed ID: 27433677 [TBL] [Abstract][Full Text] [Related]
9. Precipitation Hardening at Elevated Temperatures above 400 °C and Subsequent Natural Age Hardening of Commercial Al-Si-Cu Alloy. Li R; Takata N; Suzuki A; Kobashi M; Okada Y; Furukawa Y Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885308 [TBL] [Abstract][Full Text] [Related]
10. Effect of Thermal Treatments on Sn-Alloyed Al-Mg-Si Alloys. Schmid F; Uggowitzer PJ; Schäublin R; Werinos M; Ebner T; Pogatscher S Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31163606 [TBL] [Abstract][Full Text] [Related]
11. Effect of Step Quenching on Multi-Step Aging Behavior in Al-Mg-Si Alloys. Song M; Kim I; Lee K; Kim J J Nanosci Nanotechnol; 2020 Jan; 20(1):540-545. PubMed ID: 31383207 [TBL] [Abstract][Full Text] [Related]
12. Synergistic Effect of Strontium and Melt Quenching on the Solidification Microstructure of Hypereutectic Al-Si Alloys. Wang Y; Chen W; Liu Y; Peng H; Wang J; Su X Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763465 [TBL] [Abstract][Full Text] [Related]
13. Precipitation during Quenching in 2A97 Aluminum Alloy and the Influences from Grain Structure. Wang X; Jiang J; Li G; Shao W; Zhen L Materials (Basel); 2021 May; 14(11):. PubMed ID: 34070292 [TBL] [Abstract][Full Text] [Related]
14. A Yield Stress and Work Hardening Model of Al-Mg-Si Alloy Considering the Strengthening Effect of β" and β' Precipitates. Zheng X; Huang Q; Mao H; Li K; Xiao N; Li X; Du Y; Liu Y; Kong Y Materials (Basel); 2023 Nov; 16(22):. PubMed ID: 38005112 [TBL] [Abstract][Full Text] [Related]
15. Evidence of disruption of Si-rich microstructure in engineering-lightweight Al-12.2at.%Si alloy melt above liquidus temperature. Dong X; Li P; Amirkhanlou S; Ji S; Popel PS; Dahlborg U; Calvo-Dahlborg M Sci Rep; 2020 Jul; 10(1):12979. PubMed ID: 32737402 [TBL] [Abstract][Full Text] [Related]
16. Role of aging induced α precipitation on the mechanical and tribocorrosive performance of a β Ti-Nb-Ta-O orthopedic alloy. Acharya S; Bahl S; Dabas SS; Hassan S; Gopal V; Panicker AG; Manivasagam G; Suwas S; Chatterjee K Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109755. PubMed ID: 31349485 [TBL] [Abstract][Full Text] [Related]
17. Heat Treatments and Critical Quenching Rates in Additively Manufactured Al-Si-Mg Alloys. Hitzler L; Hafenstein S; Mendez Martin F; Clemens H; Sert E; Öchsner A; Merkel M; Werner E Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033428 [TBL] [Abstract][Full Text] [Related]
18. Improving the Mechanical Response of Al-Mg-Si 6082 Structural Alloys during High-Temperature Exposure through Dispersoid Strengthening. Rakhmonov J; Liu K; Rometsch P; Parson N; Chen XG Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33238429 [TBL] [Abstract][Full Text] [Related]
19. A Study of Second-Phase Precipitates and Dispersoid Particles in 2024 Aluminum Alloy after Different Aging Treatments. Staszczyk A; Sawicki J; Adamczyk-Cieslak B Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31842250 [TBL] [Abstract][Full Text] [Related]
20. Data analysis and other considerations concerning the study of precipitation in Al-Mg-Si alloys by Atom Probe Tomography. Zandbergen MW; Xu Q; Cerezo A; Smith GD Data Brief; 2015 Dec; 5():626-41. PubMed ID: 26958619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]