These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 31683680)
1. Identification of Rice Large Grain Gene Tomita M; Yazawa S; Uenishi Y Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31683680 [TBL] [Abstract][Full Text] [Related]
2. Combining two semidwarfing genes d60 and sd1 for reduced height in 'Minihikari', a new rice germplasm in the 'Koshihikari' genetic background. Tomita M Genet Res (Camb); 2012 Oct; 94(5):235-44. PubMed ID: 23298446 [TBL] [Abstract][Full Text] [Related]
3. Genome wide association mapping for grain shape traits in indica rice. Feng Y; Lu Q; Zhai R; Zhang M; Xu Q; Yang Y; Wang S; Yuan X; Yu H; Wang Y; Wei X Planta; 2016 Oct; 244(4):819-30. PubMed ID: 27198135 [TBL] [Abstract][Full Text] [Related]
4. Genetic Performance of the Semidwarfing Allele Tomita M; Ishii K Biomed Res Int; 2018; 2018():4241725. PubMed ID: 29850513 [TBL] [Abstract][Full Text] [Related]
5. Year-round flowering gene e1, a mutation at the E1 locus on rice chromosome 7 and its combination with green revolution gene sd1 in an isogenic cell line. Tomita M; Obara Y Gene; 2022 Mar; 815():146166. PubMed ID: 34995737 [TBL] [Abstract][Full Text] [Related]
6. Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Xie X; Song MH; Jin F; Ahn SN; Suh JP; Hwang HG; McCouch SR Theor Appl Genet; 2006 Sep; 113(5):885-94. PubMed ID: 16850315 [TBL] [Abstract][Full Text] [Related]
7. Genetic mechanisms underlying yield potential in the rice high-yielding cultivar Takanari, based on reciprocal chromosome segment substitution lines. Takai T; Ikka T; Kondo K; Nonoue Y; Ono N; Arai-Sanoh Y; Yoshinaga S; Nakano H; Yano M; Kondo M; Yamamoto T BMC Plant Biol; 2014 Nov; 14():295. PubMed ID: 25404368 [TBL] [Abstract][Full Text] [Related]
8. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Wan XY; Wan JM; Jiang L; Wang JK; Zhai HQ; Weng JF; Wang HL; Lei CL; Wang JL; Zhang X; Cheng ZJ; Guo XP Theor Appl Genet; 2006 May; 112(7):1258-70. PubMed ID: 16477428 [TBL] [Abstract][Full Text] [Related]
9. Whole-Genome Sequencing Revealed a Late-Maturing Isogenic Rice Koshihikari Integrated with Tomita M; Tokuyama R; Matsumoto S; Ishii K Int J Genomics; 2022; 2022():4565977. PubMed ID: 35036423 [TBL] [Abstract][Full Text] [Related]
11. A novel rice grain size gene OsSNB was identified by genome-wide association study in natural population. Ma X; Feng F; Zhang Y; Elesawi IE; Xu K; Li T; Mei H; Liu H; Gao N; Chen C; Luo L; Yu S PLoS Genet; 2019 May; 15(5):e1008191. PubMed ID: 31150378 [TBL] [Abstract][Full Text] [Related]
12. Fine mapping of a quantitative trait locus for spikelet number per panicle in a new plant type rice and evaluation of a near-isogenic line for grain productivity. Sasaki K; Fujita D; Koide Y; Lumanglas PD; Gannaban RB; Tagle AG; Obara M; Fukuta Y; Kobayashi N; Ishimaru T J Exp Bot; 2017 May; 68(11):2693-2702. PubMed ID: 28582550 [TBL] [Abstract][Full Text] [Related]
13. Dissection of the qTGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice. Zhang HW; Fan YY; Zhu YJ; Chen JY; Yu SB; Zhuang JY BMC Genet; 2016 Jun; 17(1):98. PubMed ID: 27363861 [TBL] [Abstract][Full Text] [Related]
14. Identification of a novel QTL and candidate gene associated with grain size using chromosome segment substitution lines in rice. Wang D; Sun W; Yuan Z; Sun Q; Fan K; Zhang C; Yu S Sci Rep; 2021 Jan; 11(1):189. PubMed ID: 33420305 [TBL] [Abstract][Full Text] [Related]
15. Time-course association mapping of the grain-filling rate in rice (Oryza sativa L.). Liu E; Liu X; Zeng S; Zhao K; Zhu C; Liu Y; Breria MC; Zhang B; Hong D PLoS One; 2015; 10(3):e0119959. PubMed ID: 25789629 [TBL] [Abstract][Full Text] [Related]
16. Genetic analysis for rice grain quality traits in the YVB stable variant line using RAD-seq. Peng Y; Hu Y; Mao B; Xiang H; Shao Y; Pan Y; Sheng X; Li Y; Ni X; Xia Y; Zhang G; Yuan L; Quan Z; Zhao B Mol Genet Genomics; 2016 Feb; 291(1):297-307. PubMed ID: 26334612 [TBL] [Abstract][Full Text] [Related]
17. Verification and evaluation of grain QTLs using RILs from TD70 x Kasalath in rice. Zhang YD; Zheng J; Liang ZK; Liang YL; Peng ZH; Wang CL Genet Mol Res; 2015 Nov; 14(4):14882-92. PubMed ID: 26600549 [TBL] [Abstract][Full Text] [Related]
18. Genome-wide association study of rice grain width variation. Zheng XM; Gong T; Ou HL; Xue D; Qiao W; Wang J; Liu S; Yang Q; Olsen KM Genome; 2018 Apr; 61(4):233-240. PubMed ID: 29193996 [TBL] [Abstract][Full Text] [Related]
19. Indian rice "Kasalath" contains genes that improve traits of Japanese premium rice "Koshihikari". Madoka Y; Kashiwagi T; Hirotsu N; Ishimaru K Theor Appl Genet; 2008 Mar; 116(5):603-12. PubMed ID: 18097643 [TBL] [Abstract][Full Text] [Related]
20. Control of Thousand-Grain Weight by Zuo ZW; Zhang ZH; Huang DR; Fan YY; Yu SB; Zhuang JY; Zhu YJ Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]