These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31683825)

  • 21. Synergy of Hofmeister effect and ligand crosslinking enabled the facile fabrication of super-strong, pre-stretching-enhanced gelatin-based hydrogels.
    Zeng C; Wu P; Guo J; Zhao N; Ke C; Liu G; Zhou F; Liu W
    Soft Matter; 2022 Nov; 18(45):8675-8686. PubMed ID: 36349798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supramolecular polymeric materials via cyclodextrin-guest interactions.
    Harada A; Takashima Y; Nakahata M
    Acc Chem Res; 2014 Jul; 47(7):2128-40. PubMed ID: 24911321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers.
    Dash R; Foston M; Ragauskas AJ
    Carbohydr Polym; 2013 Jan; 91(2):638-45. PubMed ID: 23121958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanically Enhanced Salmo salar Gelatin by Enzymatic Cross-linking: Premise of a Bioinspired Material for Food Packaging, Cosmetics, and Biomedical Applications.
    Buscaglia M; Guérard F; Roquefort P; Aubry T; Fauchon M; Toueix Y; Stiger-Pouvreau V; Hellio C; Le Blay G
    Mar Biotechnol (NY); 2022 Aug; 24(4):801-819. PubMed ID: 35915285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol).
    Ooya T; Utsunomiya H; Eguchi M; Yui N
    Bioconjug Chem; 2005; 16(1):62-9. PubMed ID: 15656576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Functionalization of Cyclodextrin Derivatives to Create Supramolecular Pharmaceutical Materials].
    Osaki M
    Yakugaku Zasshi; 2019; 139(2):165-173. PubMed ID: 30713225
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-Linked Self-Assembling Peptides and Their Post-Assembly Functionalization via One-Pot and In Situ Gelation System.
    Pugliese R; Gelain F
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32549405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material.
    Sun L; Li B; Jiang D; Hou H
    Colloids Surf B Biointerfaces; 2017 Nov; 159():89-96. PubMed ID: 28780464
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oligo(ethylene glycol)-modified β-cyclodextrin-based polyrotaxanes for simultaneously modulating solubility and cellular internalization efficiency.
    Tamura A; Ohashi M; Yui N
    J Biomater Sci Polym Ed; 2017; 28(10-12):1124-1139. PubMed ID: 28299982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable Cross-Linking and Adhesion of Gelatin Hydrogels via Bioorthogonal Click Chemistry.
    Contessi Negrini N; Angelova Volponi A; Sharpe PT; Celiz AD
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4330-4346. PubMed ID: 34086456
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticles assembled via pH-responsive reversible segregation of cyclodextrins in polyrotaxanes.
    Tardy BL; Tan S; Dam HH; Ejima H; Blencowe A; Qiao GG; Caruso F
    Nanoscale; 2016 Aug; 8(34):15589-96. PubMed ID: 27509868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanical and Optical Properties of Reinforced Collagen Membranes for Corneal Regeneration through Polyrotaxane Cross-Linking.
    Lei X; Jia YG; Song W; Qi D; Jin J; Liu J; Ren L
    ACS Appl Bio Mater; 2019 Sep; 2(9):3861-3869. PubMed ID: 35021320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extracellular matrix (ECM)-inspired high-strength gelatin-alginate based hydrogels for bone repair.
    Wu T; Liu L; Gao Z; Cui C; Fan C; Liu Y; Di M; Yang Q; Xu Z; Liu W
    Biomater Sci; 2023 Apr; 11(8):2877-2885. PubMed ID: 36876524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermogelling and Chemoselectively Cross-Linked Hydrogels with Controlled Mechanical Properties and Degradation Behavior.
    Boere KW; van den Dikkenberg J; Gao Y; Visser J; Hennink WE; Vermonden T
    Biomacromolecules; 2015 Sep; 16(9):2840-51. PubMed ID: 26237583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gelatin-Poly (γ-Glutamic Acid) Hydrogel as a Potential Adhesive for Repair of Intervertebral Disc Annulus Fibrosus: Evaluation of Cytocompatibility and Degradability.
    Yang JJ; Lin YY; Chao KH; Wang JL
    Spine (Phila Pa 1976); 2021 Feb; 46(4):E243-E249. PubMed ID: 33475276
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supermolecule-Drug Conjugates Based on Acid-Degradable Polyrotaxanes for pH-Dependent Intracellular Release of Doxorubicin.
    Tamura A; Osawa M; Yui N
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985487
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellular internalization and gene silencing of siRNA polyplexes by cytocleavable cationic polyrotaxanes with tailored rigid backbones.
    Tamura A; Yui N
    Biomaterials; 2013 Mar; 34(10):2480-91. PubMed ID: 23332177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual Functionalization of Gelatin for Orthogonal and Dynamic Hydrogel Cross-Linking.
    Kim MH; Nguyen H; Chang CY; Lin CC
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4196-4208. PubMed ID: 34370445
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PVA-gelatin hydrogels formed using combined theta-gel and cryo-gel fabrication techniques.
    Charron PN; Braddish TA; Oldinski RA
    J Mech Behav Biomed Mater; 2019 Apr; 92():90-96. PubMed ID: 30665114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable erosion time and profile in poly(ethylene glycol) hydrogels by supramolecular structure of hydrolyzable polyrotaxane.
    Ichi T; Watanabe J; Ooya T; Yui N
    Biomacromolecules; 2001; 2(1):204-10. PubMed ID: 11749174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.