These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31683914)

  • 41. UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags.
    Hong H; Hu J; Yan X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27318-27326. PubMed ID: 31284718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Silver-Coated Poly(dimethylsiloxane) Beads for Soft, Stretchable, and Thermally Stable Conductive Elastomer Composites.
    Pan C; Ohm Y; Wang J; Ford MJ; Kumar K; Kumar S; Majidi C
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42561-42570. PubMed ID: 31638761
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-Dimensional Highly Stretchable Conductors from Elastic Fiber Mat with Conductive Polymer Coating.
    Duan S; Wang Z; Zhang L; Liu J; Li C
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30772-30778. PubMed ID: 28812874
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electroplating and Ablative Laser Structuring of Elastomer Composites for Stretchable Multi-Layer and Multi-Material Electronic and Sensor Systems.
    Stier SP; Böse H
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33802335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Block Copolymer Elastomers for Stretchable Electronics.
    You I; Kong M; Jeong U
    Acc Chem Res; 2019 Jan; 52(1):63-72. PubMed ID: 30586291
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Material-Based Approaches for the Fabrication of Stretchable Electronics.
    Kim DC; Shim HJ; Lee W; Koo JH; Kim DH
    Adv Mater; 2020 Apr; 32(15):e1902743. PubMed ID: 31408223
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intrinsically Stretchable, Transient Conductors from a Composite Material of Ag Flakes and Gelatin Hydrogel.
    Ding S; Jiang Z; Chen F; Fu L; Lv Y; Qian Y; Zhao S
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27572-27577. PubMed ID: 32453541
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electromechanical Properties of 3D-Printed Stretchable Carbon Fiber Composites.
    Salo T; Di Vito D; Halme A; Vanhala J
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296085
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent Development of Flexible and Stretchable Antennas for Bio-Integrated Electronics.
    Zhu J; Cheng H
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544705
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Design and applications of stretchable and self-healable conductors for soft electronics.
    Zhao Y; Kim A; Wan G; Tee BCK
    Nano Converg; 2019 Aug; 6(1):25. PubMed ID: 31367883
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly Stable Liquid Metal Conductors with Superior Electrical Stability and Tough Interface Bonding for Stretchable Electronics.
    Wang S; Liu C; Liu J; Li S; Xu F; Xu D; Zhang W; Wu Y; Shang J; Liu Y; Li RW
    ACS Appl Mater Interfaces; 2023 May; 15(18):22291-22300. PubMed ID: 37127569
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional Piezoresistive Polymer Composites Based on CO
    Mastropasqua C; Veca A; Damin A; Brunella V; Cesano F
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616078
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A highly stretchable, transparent, and conductive polymer.
    Wang Y; Zhu C; Pfattner R; Yan H; Jin L; Chen S; Molina-Lopez F; Lissel F; Liu J; Rabiah NI; Chen Z; Chung JW; Linder C; Toney MF; Murmann B; Bao Z
    Sci Adv; 2017 Mar; 3(3):e1602076. PubMed ID: 28345040
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrical Failure Mechanism in Stretchable Thin-Film Conductors.
    Zhao Y; Yu M; Sun J; Zhang S; Li Q; Teng L; Tian Q; Xie R; Li G; Liu L; Liu Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):3121-3129. PubMed ID: 34981914
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-performance stretchable conductive nanocomposites: materials, processes, and device applications.
    Choi S; Han SI; Kim D; Hyeon T; Kim DH
    Chem Soc Rev; 2019 Mar; 48(6):1566-1595. PubMed ID: 30519703
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation of changes in the electrical properties of novel knitted conductive textiles during cyclic loading.
    Isaia C; McNally D; McMaster SA; Branson DT
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6058-6061. PubMed ID: 28269634
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heterogeneous Strain Distribution of Elastomer Substrates To Enhance the Sensitivity of Stretchable Strain Sensors.
    Jiang Y; Liu Z; Wang C; Chen X
    Acc Chem Res; 2019 Jan; 52(1):82-90. PubMed ID: 30586278
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fabrication of highly stretchable conductors via morphological control of carbon nanotube network.
    Lin L; Liu S; Fu S; Zhang S; Deng H; Fu Q
    Small; 2013 Nov; 9(21):3620-9. PubMed ID: 23630114
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhancing the Performance of Stretchable Conductors for E-Textiles by Controlled Ink Permeation.
    Jin H; Matsuhisa N; Lee S; Abbas M; Yokota T; Someya T
    Adv Mater; 2017 Jun; 29(21):. PubMed ID: 28370661
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New Textile Sensors for In Situ Structural Health Monitoring of Textile Reinforced Thermoplastic Composites Based on the Conductive Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Polymer Complex.
    Jerkovic I; Koncar V; Grancaric AM
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 28994733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.