These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31683935)

  • 21. High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel.
    Kazoe Y; Yamashiro I; Mawatari K; Kitamori T
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404314
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-speed transport of liquid droplets in magnetic tubular microactuators.
    Lei W; Hou G; Liu M; Rong Q; Xu Y; Tian Y; Jiang L
    Sci Adv; 2018 Dec; 4(12):eaau8767. PubMed ID: 30627667
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Universal Plasma Jet for Droplet Manipulation on a PDMS Surface towards Wall-Less Scaffolds.
    Peng CY; Tsai CD
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33920710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic digital microfluidics - a review.
    Zhang Y; Nguyen NT
    Lab Chip; 2017 Mar; 17(6):994-1008. PubMed ID: 28220916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manipulation and Mixing of 200 Femtoliter Droplets in Nanofluidic Channels Using MHz-Order Surface Acoustic Waves.
    Zhang N; Horesh A; Friend J
    Adv Sci (Weinh); 2021 Jul; 8(13):2100408. PubMed ID: 34258166
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Droplet-driven transports on superhydrophobic-patterned surface microfluidics.
    Xing S; Harake RS; Pan T
    Lab Chip; 2011 Nov; 11(21):3642-8. PubMed ID: 21918770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Droplet Sorting and Manipulation on Patterned Two-Phase Slippery Lubricant-Infused Surface.
    Paulssen D; Hardt S; Levkin PA
    ACS Appl Mater Interfaces; 2019 May; 11(17):16130-16138. PubMed ID: 30932477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental and theoretical studies into the release of blood droplets from weapon tips.
    Adam CD
    Forensic Sci Int; 2019 Oct; 303():109934. PubMed ID: 31479816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Effect of Non-Uniform Magnetic Field on the Efficiency of Mixing in Droplet-Based Microfluidics: A Numerical Investigation.
    Rezaeian M; Nouri M; Hassani-Gangaraj M; Shamloo A; Nasiri R
    Micromachines (Basel); 2022 Oct; 13(10):. PubMed ID: 36296014
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Droplet Merging on a Lab-on-a-Chip Platform by Uniform Magnetic Fields.
    Varma VB; Ray A; Wang ZM; Wang ZP; Ramanujan RV
    Sci Rep; 2016 Nov; 6():37671. PubMed ID: 27892475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reconfigurable multifunctional ferrofluid droplet robots.
    Fan X; Dong X; Karacakol AC; Xie H; Sitti M
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27916-27926. PubMed ID: 33106419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Magneto-Responsive Shutter for On-Demand Droplet Manipulation.
    Wang J; Zhu Z; Liu P; Yi S; Peng L; Yang Z; Tian X; Jiang L
    Adv Sci (Weinh); 2021 Dec; 8(23):e2103182. PubMed ID: 34693657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detaching droplets in immiscible fluids from a solid substrate with the help of electrowetting.
    Hong J; Lee SJ
    Lab Chip; 2015 Feb; 15(3):900-7. PubMed ID: 25500988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Droplet on Soft Shuttle: Electrowetting-on-Dielectric Actuation of Small Droplets.
    Ruvalcaba-Cardenas AD; Thurgood P; Chen S; Khoshmanesh K; Tovar-Lopez FJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):39283-39291. PubMed ID: 31547643
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnetically responsive polymer nanopillars with nickel cap.
    Luo Z; Zhang XA; Chang CH
    Nanotechnology; 2021 May; 32(20):205301. PubMed ID: 33567417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering superlyophobic surfaces as the microfluidic platform for droplet manipulation.
    Wu T; Suzuki Y
    Lab Chip; 2011 Sep; 11(18):3121-9. PubMed ID: 21789298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellulose-Based Microparticles for Magnetically Controlled Optical Modulation and Sensing.
    Hausmann MK; Hauser A; Siqueira G; Libanori R; Vehusheia SL; Schuerle S; Zimmermann T; Studart AR
    Small; 2020 Jan; 16(1):e1904251. PubMed ID: 31805220
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optofluidic droplet dye laser generated by microfluidic nozzles.
    Zhang H; Sun Y
    Opt Express; 2018 Apr; 26(9):11284-11291. PubMed ID: 29716052
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ferrofluid Microdroplet Splitting for Population-Based Microfluidics and Interfacial Tensiometry.
    Latikka M; Backholm M; Baidya A; Ballesio A; Serve A; Beaune G; Timonen JVI; Pradeep T; Ras RHA
    Adv Sci (Weinh); 2020 Jul; 7(14):2000359. PubMed ID: 32714752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Droplet Microfluidics in Thermoplastics: Device Fabrication, Droplet Generation, and Content Manipulation using Integrated Electric and Magnetic Fields.
    Sahore V; Doonan SR; Bailey RC
    Anal Methods; 2018 Sep; 10(35):4264-4274. PubMed ID: 30886651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.