These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 31683978)

  • 21. Myeloid-derived suppressor cells: Implication in myeloid malignancies and immunotherapy.
    Kapor S; Radojković M; Santibanez JF
    Acta Histochem; 2024 Oct; 126(5-7):152183. PubMed ID: 39029317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autophagy orchestrates the regulatory program of tumor-associated myeloid-derived suppressor cells.
    Alissafi T; Hatzioannou A; Mintzas K; Barouni RM; Banos A; Sormendi S; Polyzos A; Xilouri M; Wielockx B; Gogas H; Verginis P
    J Clin Invest; 2018 Aug; 128(9):3840-3852. PubMed ID: 29920188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relevance of Interferon Regulatory Factor-8 Expression in Myeloid-Tumor Interactions.
    Abrams SI; Netherby CS; Twum DY; Messmer MN
    J Interferon Cytokine Res; 2016 Jul; 36(7):442-53. PubMed ID: 27379866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction Between MDSC and NK Cells in Solid and Hematological Malignancies: Impact on HSCT.
    Tumino N; Di Pace AL; Besi F; Quatrini L; Vacca P; Moretta L
    Front Immunol; 2021; 12():638841. PubMed ID: 33679798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myeloid-derived suppressor cells and their role in pancreatic cancer.
    Pergamo M; Miller G
    Cancer Gene Ther; 2017 Mar; 24(3):100-105. PubMed ID: 27910857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunosuppressive Myeloid Cells' Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy.
    Kamran N; Kadiyala P; Saxena M; Candolfi M; Li Y; Moreno-Ayala MA; Raja N; Shah D; Lowenstein PR; Castro MG
    Mol Ther; 2017 Jan; 25(1):232-248. PubMed ID: 28129117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment.
    Dysthe M; Parihar R
    Adv Exp Med Biol; 2020; 1224():117-140. PubMed ID: 32036608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Myeloid-derived suppressor cells: Roles in the tumor microenvironment and tumor radiotherapy.
    Yin Z; Li C; Wang J; Xue L
    Int J Cancer; 2019 Mar; 144(5):933-946. PubMed ID: 29992569
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of Myeloid-Derived Suppressor Cell Subpopulations in Autoimmune Arthritis.
    Li M; Zhu D; Wang T; Xia X; Tian J; Wang S
    Front Immunol; 2018; 9():2849. PubMed ID: 30564242
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myeloid-derived suppressor cells as effectors of immune suppression in cancer.
    Pyzer AR; Cole L; Rosenblatt J; Avigan DE
    Int J Cancer; 2016 Nov; 139(9):1915-26. PubMed ID: 27299510
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Circulating Myeloid Regulatory Cells: Promising Biomarkers in B-Cell Lymphomas.
    Ferrant J; Lhomme F; Le Gallou S; Irish JM; Roussel M
    Front Immunol; 2020; 11():623993. PubMed ID: 33603754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hepatic Stellate Cells Enhance Liver Cancer Progression by Inducing Myeloid-Derived Suppressor Cells through Interleukin-6 Signaling.
    Hsieh CC; Hung CH; Chiang M; Tsai YC; He JT
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614930
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myeloid-derived suppressor cells: their role in the pathophysiology of hematologic malignancies and potential as therapeutic targets.
    Younos IH; Abe F; Talmadge JE
    Leuk Lymphoma; 2015; 56(8):2251-63. PubMed ID: 25407654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic changes and interaction of tumor cell, myeloid-derived suppressor cell and T cell in hypoxic microenvironment.
    Ou X; Lv W
    Future Oncol; 2020 Mar; 16(8):383-393. PubMed ID: 32067476
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-mobility group box protein 1 promotes the survival of myeloid-derived suppressor cells by inducing autophagy.
    Parker KH; Horn LA; Ostrand-Rosenberg S
    J Leukoc Biol; 2016 Sep; 100(3):463-70. PubMed ID: 26864266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Splenic Hematopoietic and Stromal Cells in Cancer Progression.
    Steenbrugge J; De Jaeghere EA; Meyer E; Denys H; De Wever O
    Cancer Res; 2021 Jan; 81(1):27-34. PubMed ID: 32998999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MDSC; the Most Important Cell You Have Never Heard Of.
    Tesi RJ
    Trends Pharmacol Sci; 2019 Jan; 40(1):4-7. PubMed ID: 30527590
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional Myeloid-Derived Suppressor Cell Subsets Recover Rapidly after Allogeneic Hematopoietic Stem/Progenitor Cell Transplantation.
    Guan Q; Blankstein AR; Anjos K; Synova O; Tulloch M; Giftakis A; Yang B; Lambert P; Peng Z; Cuvelier GD; Wall DA
    Biol Blood Marrow Transplant; 2015 Jul; 21(7):1205-14. PubMed ID: 25963921
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hierarchical Involvement of Myeloid-Derived Suppressor Cells and Monocytes Expressing Latency-Associated Peptide in Plasma Cell Dyscrasias.
    Tadmor T; Levy I; Vadasz Z
    Turk J Haematol; 2018 May; 35(2):116-121. PubMed ID: 29589834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Emerging Role of Myeloid-Derived Suppressor Cells in Tuberculosis.
    Magcwebeba T; Dorhoi A; du Plessis N
    Front Immunol; 2019; 10():917. PubMed ID: 31114578
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.