These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 31684187)
1. Gas Separation Silica Membranes Prepared by Chemical Vapor Deposition of Methyl-Substituted Silanes. Kato H; Lundin SB; Ahn SJ; Takagaki A; Kikuchi R; Oyama ST Membranes (Basel); 2019 Nov; 9(11):. PubMed ID: 31684187 [TBL] [Abstract][Full Text] [Related]
2. Fabrication and Evaluation of Trimethylmethoxysilane (TMMOS)-Derived Membranes for Gas Separation. Mise Y; Ahn SJ; Takagaki A; Kikuchi R; Oyama ST Membranes (Basel); 2019 Sep; 9(10):. PubMed ID: 31547032 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of Silica Membranes by Chemical Vapor Deposition Using a Dimethyldimethoxysilane Precursor. Oyama ST; Aono H; Takagaki A; Sugawara T; Kikuchi R Membranes (Basel); 2020 Mar; 10(3):. PubMed ID: 32235698 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and Characterization of Silica-Tantala Microporous Membranes for Gas Separations Fabricated Using Chemical Vapor Deposition. Lundin SB; Wang H; Oyama ST Membranes (Basel); 2022 Sep; 12(9):. PubMed ID: 36135909 [TBL] [Abstract][Full Text] [Related]
5. Zirconia-Doped Methylated Silica Membranes via Sol-Gel Process: Microstructure and Hydrogen Permselectivity. Wang L; Yang J Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808001 [TBL] [Abstract][Full Text] [Related]
6. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes. Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919 [TBL] [Abstract][Full Text] [Related]
7. Highly hydrothermally stable microporous silica membranes for hydrogen separation. Wei Q; Wang F; Nie ZR; Song CL; Wang YL; Li QY J Phys Chem B; 2008 Aug; 112(31):9354-9. PubMed ID: 18613718 [TBL] [Abstract][Full Text] [Related]
8. The Evaluation of Counter Diffusion CVD Silica Membrane Formation Process by In Situ Analysis of Diffusion Carrier Gas. Ishii K; Nomura M Membranes (Basel); 2022 Jan; 12(2):. PubMed ID: 35207024 [TBL] [Abstract][Full Text] [Related]
9. Preparation and Evaluation of Nanocomposite Sodalite/α-Al Eterigho-Ikelegbe O; Bada SO; Daramola MO Membranes (Basel); 2020 Oct; 10(11):. PubMed ID: 33137909 [TBL] [Abstract][Full Text] [Related]
10. Sol-Gel Processed Cobalt-Doped Methylated Silica Membranes Calcined under N Wang L; Yang J; Mu R; Guo Y; Hou H Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361380 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of Crystalline Microporous Membrane from 2D MOF Nanosheets for Gas Separation. Jiang S; Shi X; Sun F; Zhu G Chem Asian J; 2020 Aug; 15(15):2371-2378. PubMed ID: 32249501 [TBL] [Abstract][Full Text] [Related]
12. Effect of nickel deposition on hydrogen permeation behavior of mesoporous gamma-alumina composite membranes. Yu CY; Sea BK; Lee DW; Park SJ; Lee KY; Lee KH J Colloid Interface Sci; 2008 Mar; 319(2):470-6. PubMed ID: 18177664 [TBL] [Abstract][Full Text] [Related]
13. Chemical vapor deposition on chabazite (CHA) zeolite membranes for effective post-combustion CO2 capture. Kim E; Lee T; Kim H; Jung WJ; Han DY; Baik H; Choi N; Choi J Environ Sci Technol; 2014 Dec; 48(24):14828-36. PubMed ID: 25479409 [TBL] [Abstract][Full Text] [Related]
14. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane. Yao B; Mandrà S; Curry JO; Shaikhutdinov S; Freund HJ; Schrier J ACS Appl Mater Interfaces; 2017 Dec; 9(49):43061-43071. PubMed ID: 29156127 [TBL] [Abstract][Full Text] [Related]
15. Direct Chemical Vapor Deposition Synthesis of Porous Single-Layer Graphene Membranes with High Gas Permeances and Selectivities. Yuan Z; He G; Faucher S; Kuehne M; Li SX; Blankschtein D; Strano MS Adv Mater; 2021 Nov; 33(44):e2104308. PubMed ID: 34510595 [TBL] [Abstract][Full Text] [Related]
16. Development of CVD Silica Membranes Having High Hydrogen Permeance and Steam Durability and a Membrane Reactor for a Water Gas Shift Reaction. Nishida R; Tago T; Saitoh T; Seshimo M; Nakao SI Membranes (Basel); 2019 Oct; 9(11):. PubMed ID: 31671562 [TBL] [Abstract][Full Text] [Related]
17. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation. Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710 [TBL] [Abstract][Full Text] [Related]
18. Tailor-Made Modification of Commercial Ceramic Membranes for Environmental and Energy-Oriented Gas Separation Applications. Grekou TK; Koutsonikolas DE; Karagiannakis G; Kikkinides ES Membranes (Basel); 2022 Mar; 12(3):. PubMed ID: 35323782 [TBL] [Abstract][Full Text] [Related]
20. Preparation and Gas Permeation Properties of Fluorine-Silica Membranes with Controlled Amorphous Silica Structures: Effect of Fluorine Source and Calcination Temperature on Network Size. Kanezashi M; Matsutani T; Wakihara T; Nagasawa H; Okubo T; Tsuru T ACS Appl Mater Interfaces; 2017 Jul; 9(29):24625-24633. PubMed ID: 28671814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]