These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 31684253)
21. Two characterization methods of ripple errors for the large square aperture. Fei W; Zhao L; Bai J; Hou J; Yan H; Wang K Appl Opt; 2021 Oct; 60(28):8706-8715. PubMed ID: 34613096 [TBL] [Abstract][Full Text] [Related]
22. Q-Spectrum and its application for the characterization of mid-spatial frequencies on polished surfaces. Corunin A Appl Opt; 2018 Jul; 57(19):5314-5318. PubMed ID: 30117822 [TBL] [Abstract][Full Text] [Related]
23. Restraint of path effect on optical surface in magnetorheological jet polishing. Wang T; Cheng H; Zhang W; Yang H; Wu W Appl Opt; 2016 Feb; 55(4):935-42. PubMed ID: 26836103 [TBL] [Abstract][Full Text] [Related]
24. Modeling and in-depth analysis of the mid-spatial-frequency error influenced by actual contact pressure distribution in sub-aperture polishing. Zhang L; Wan S; Li H; Guo H; Wei C; Zhang D; Shao J Opt Express; 2023 Apr; 31(9):14414-14431. PubMed ID: 37157306 [TBL] [Abstract][Full Text] [Related]
25. Six-directional pseudorandom consecutive unicursal polishing path for suppressing mid-spatial frequency error and realizing consecutive uniform coverage. Zhao Q; Zhang L; Fan C Appl Opt; 2019 Nov; 58(31):8529-8541. PubMed ID: 31873338 [TBL] [Abstract][Full Text] [Related]
26. The Minimum Modulation Curve as a tool for specifying optical performance: application to surfaces with mid-spatial frequency errors. Aryan H; Boreman GD; Suleski TJ Opt Express; 2019 Sep; 27(18):25551-25559. PubMed ID: 31510426 [TBL] [Abstract][Full Text] [Related]
27. Validity of the perturbation model for the propagation of MSF structures in 3D. Liang K; Forbes GW; Alonso MA Opt Express; 2020 Jul; 28(14):20277-20295. PubMed ID: 32680091 [TBL] [Abstract][Full Text] [Related]
28. Fiber-based tools: material removal and mid-spatial frequency error reduction. Shahinian H; Hassan M; Cherukuri H; Mullany BA Appl Opt; 2017 Oct; 56(29):8266-8274. PubMed ID: 29047693 [TBL] [Abstract][Full Text] [Related]
29. Experimental power spectral density analysis for mid- to high-spatial frequency surface error control. Hoyo JD; Choi H; Burge JH; Kim GH; Kim DW Appl Opt; 2017 Jun; 56(18):5258-5267. PubMed ID: 29047579 [TBL] [Abstract][Full Text] [Related]
30. Smoothing process of conformal vibration polishing for mid-spatial frequency errors: characteristics research and guiding prediction. Liu SW; Wang HX; Zhang QH; Hou J; Chen XH; Xu Q; Wang C Appl Opt; 2021 May; 60(13):3925-3935. PubMed ID: 33983331 [TBL] [Abstract][Full Text] [Related]
31. Effects of surface scatter on the optical performance of x-ray synchrotron beam-line mirrors. Harvey JE; Lewotsky KL; Kotha A Appl Opt; 1995 Jun; 34(16):3024-32. PubMed ID: 21052458 [TBL] [Abstract][Full Text] [Related]
32. Tolerancing and characterization of curved image sensor systems. Zuber F; Chambion B; Gaschet C; Caplet S; Nicolas S; Charrière S; Henry D Appl Opt; 2020 Oct; 59(28):8814-8821. PubMed ID: 33104565 [TBL] [Abstract][Full Text] [Related]
33. Design and tolerancing of achromatic and anastigmatic diffractive-refractive lens systems compared with equivalent conventional lens systems. Yoon Y Appl Opt; 2000 Jun; 39(16):2551-8. PubMed ID: 18345170 [TBL] [Abstract][Full Text] [Related]
34. Understanding the effects of groove structures on the MTF. Liang K; Alonso MA Opt Express; 2017 Aug; 25(16):18827-18841. PubMed ID: 29041075 [TBL] [Abstract][Full Text] [Related]
35. Mid-spatial frequency removal on aluminum free-form mirror. Li H; Walker DD; Zheng X; Su X; Wu L; Reynolds C; Yu G; Li T; Zhang P Opt Express; 2019 Sep; 27(18):24885-24899. PubMed ID: 31510370 [TBL] [Abstract][Full Text] [Related]
37. Subaperture stitching tolerancing for annular ring geometry. Smith GA; Burge JH Appl Opt; 2015 Sep; 54(27):8080-6. PubMed ID: 26406508 [TBL] [Abstract][Full Text] [Related]
38. Mid-frequency MTF compensation of optical sparse aperture system. Zhou C; Wang Z Opt Express; 2018 Mar; 26(6):6973-6992. PubMed ID: 29609383 [TBL] [Abstract][Full Text] [Related]
39. Further investigations on fixed abrasive diamond pellets used for diminishing mid-spatial frequency errors of optical mirrors. Dong Z; Cheng H; Tam HY Appl Opt; 2014 Jan; 53(3):327-34. PubMed ID: 24514115 [TBL] [Abstract][Full Text] [Related]
40. Measurement and calibration of interferometric imaging aberrations. Murphy PE; Brown TG; Moore DT Appl Opt; 2000 Dec; 39(34):6421-9. PubMed ID: 18354655 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]