BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 31684287)

  • 1. High-efficiency laser wavelength conversion in deuterium-filled hollow-core photonic crystal fiber by rotational stimulated Raman scattering.
    Cui Y; Huang W; Li Z; Zhou Z; Wang Z
    Opt Express; 2019 Oct; 27(21):30396-30404. PubMed ID: 31684287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen.
    Benabid F; Bouwmans G; Knight JC; Russell PS; Couny F
    Phys Rev Lett; 2004 Sep; 93(12):123903. PubMed ID: 15447265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascaded All-Fiber Gas Raman Laser Oscillator in Deuterium-Filled Hollow-Core Photonic Crystal Fibers.
    Li H; Pei W; Li X; Lei L; Shi J; Zhou Z; Wang Z
    Nanomaterials (Basel); 2024 Apr; 14(8):. PubMed ID: 38668155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulsed fiber laser oscillator at 1.7 µm by stimulated Raman scattering in H
    Pei W; Li H; Huang W; Wang M; Wang Z
    Opt Express; 2021 Oct; 29(21):33915-33925. PubMed ID: 34809192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-Fiber Tunable Pulsed 1.7 μm Fiber Lasers Based on Stimulated Raman Scattering of Hydrogen Molecules in Hollow-Core Fibers.
    Pei W; Li H; Huang W; Wang M; Wang Z
    Molecules; 2021 Jul; 26(15):. PubMed ID: 34361709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of a 150-kW-peak-power, 2-GHz-linewidth, 1.9-μm fiber gas Raman source.
    Wang Z; Gu B; Chen Y; Li Z; Xi X
    Appl Opt; 2017 Sep; 56(27):7657-7661. PubMed ID: 29047745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subwatt threshold cw Raman fiber-gas laser based on H2-filled hollow-core photonic crystal fiber.
    Couny F; Benabid F; Light PS
    Phys Rev Lett; 2007 Oct; 99(14):143903. PubMed ID: 17930673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-fiber gas Raman laser oscillator.
    Li H; Huang W; Pei W; Zhou Z; Cui Y; Wang M; Wang Z
    Opt Lett; 2021 Oct; 46(20):5208-5211. PubMed ID: 34653154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth.
    Chen Y; Wang Z; Gu B; Yu F; Lu Q
    Opt Lett; 2016 Nov; 41(21):5118-5121. PubMed ID: 27805698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulated Raman scattering of H
    Cui Y; Tian X; Rao B; Huang W; Li H; Pei W; Wang M; Chen Z; Wang Z
    Opt Express; 2023 Feb; 31(5):8441-8452. PubMed ID: 36859959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pure rotational stimulated Raman scattering in H
    Li H; Huang W; Cui Y; Zhou Z; Wang Z
    Opt Express; 2020 Aug; 28(16):23881-23897. PubMed ID: 32752378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO
    Wang Y; Schiess OTS; Amezcua-Correa R; Markos C
    Opt Lett; 2021 Oct; 46(20):5133-5136. PubMed ID: 34653133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-wavelength high-energy gas-filled fiber Raman laser spanning from 1.53  µm to 2.4  µm.
    Adamu AI; Wang Y; Habib MS; Dasa MK; Antonio-Lopez JE; Amezcua-Correa R; Bang O; Markos C
    Opt Lett; 2021 Feb; 46(3):452-455. PubMed ID: 33528382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient mid-infrared cascade Raman source in methane-filled hollow-core fibers operating at 2.8  μm.
    Li Z; Huang W; Cui Y; Wang Z
    Opt Lett; 2018 Oct; 43(19):4671-4674. PubMed ID: 30272711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency Raman conversion in SF
    Edelstein S; Ishaaya AA
    Opt Lett; 2019 Dec; 44(23):5856-5859. PubMed ID: 31774797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 0.83 W, single-pass, 1.54 μm gas Raman source generated in a CH
    Li Z; Huang W; Cui Y; Wang Z; Wu W
    Opt Express; 2018 May; 26(10):12522-12529. PubMed ID: 29801290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber laser source of 8 W at 3.1 µm based on acetylene-filled hollow-core silica fibers.
    Huang W; Wang Z; Zhou Z; Cui Y; Li H; Pei W; Wang M; Chen J
    Opt Lett; 2022 May; 47(9):2354-2357. PubMed ID: 35486798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber.
    Benabid F; Knight JC; Antonopoulos G; Russell PS
    Science; 2002 Oct; 298(5592):399-402. PubMed ID: 12376698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization-Tailored Raman Frequency Conversion in Chiral Gas-Filled Hollow-Core Photonic Crystal Fibers.
    Davtyan S; Novoa D; Chen Y; Frosz MH; Russell PSJ
    Phys Rev Lett; 2019 Apr; 122(14):143902. PubMed ID: 31050443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-efficient Raman amplifier in methane-filled hollow-core fiber operating at 1.5 μm.
    Chen Y; Wang Z; Li Z; Huang W; Xi X; Lu Q
    Opt Express; 2017 Aug; 25(17):20944-20949. PubMed ID: 29041770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.