These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 31684430)

  • 21. Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency.
    Lu H; Liu X; Wang G; Mao D
    Nanotechnology; 2012 Nov; 23(44):444003. PubMed ID: 23079958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active Electromagnetically Induced Transparency Effect in Graphene-Dielectric Hybrid Metamaterial and Its High-Performance Sensor Application.
    Gao F; Yuan P; Gao S; Deng J; Sun Z; Jin G; Zeng G; Yan B
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene-Superconductor Photonic Integrated Circuits.
    Kalhor S; Kindness SJ; Wallis R; Beere HE; Ghanaatshoar M; Degl'Innocenti R; Kelly MJ; Hofmann S; Joyce HJ; Ritchie DA; Delfanazari K
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Loss-induced switching between electromagnetically induced transparency and critical coupling in a chalcogenide waveguide.
    Zhang B; Sun Y; Xu Y; Hu G; Zeng P; Gao M; Xia D; Huang Y; Li Z
    Opt Lett; 2021 Jun; 46(12):2828-2831. PubMed ID: 34129551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coupled resonator optical waveguide structures with highly dispersive media.
    Neff CW; Andersson LM; Qiu M
    Opt Express; 2007 Aug; 15(16):10362-9. PubMed ID: 19547387
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamically tunable plasmon induced transparency in a graphene-based nanoribbon waveguide coupled with graphene rectangular resonators structure on sapphire substrate.
    Han X; Wang T; Li X; Xiao S; Zhu Y
    Opt Express; 2015 Dec; 23(25):31945-55. PubMed ID: 26698986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic spectral splitting in multi-resonator-coupled waveguide systems.
    Zeng C
    Appl Opt; 2014 Jan; 53(1):38-43. PubMed ID: 24513987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Actively Controllable Terahertz Metal-Graphene Metamaterial Based on Electromagnetically Induced Transparency Effect.
    Gao L; Feng C; Li Y; Chen X; Wang Q; Zhao X
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning all-Optical Analog to Electromagnetically Induced Transparency in nanobeam cavities using nanoelectromechanical system.
    Shi P; Zhou G; Deng J; Tian F; Chau FS
    Sci Rep; 2015 Sep; 5():14379. PubMed ID: 26415907
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers.
    Xia SX; Zhai X; Wang LL; Sun B; Liu JQ; Wen SC
    Opt Express; 2016 Aug; 24(16):17886-99. PubMed ID: 27505756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical and Theoretical Study of Tunable Plasmonically Induced Transparency Effect Based on Bright-Dark Mode Coupling in Graphene Metasurface.
    Ma Q; Dai J; Luo A; Hong W
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32013078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manipulating electromagnetic waves in a cavity-waveguide system with nontrivial and trivial modes.
    Xu J; Zang X; Zhan X; Liu K; Zhu Y
    Opt Lett; 2022 Oct; 47(19):5204-5207. PubMed ID: 36181222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical bistability based on an analog of electromagnetically induced transparency in plasmonic waveguide-coupled resonators.
    Cui Y; Zeng C
    Appl Opt; 2012 Nov; 51(31):7482-6. PubMed ID: 23128694
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Induced transparency in nanoscale plasmonic resonator systems.
    Lu H; Liu X; Mao D; Gong Y; Wang G
    Opt Lett; 2011 Aug; 36(16):3233-5. PubMed ID: 21847218
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Uniform theoretical description of plasmon-induced transparency in plasmonic stub waveguide.
    Cao G; Li H; Zhan S; He Z; Guo Z; Xu X; Yang H
    Opt Lett; 2014 Jan; 39(2):216-9. PubMed ID: 24562110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunable electromagnetically induced transparency based on graphene metamaterials.
    Xiao B; Tong S; Fyffe A; Shi Z
    Opt Express; 2020 Feb; 28(3):4048-4057. PubMed ID: 32122064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Double Electromagnetically Induced Transparency and Its Slow Light Application Based On a Guided-Mode Resonance Grating Cascade Structure.
    Li G; Yang J; Zhang Z; Tao Y; Zhou L; Huang H; Zhang Z; Han Y
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32825800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene plasmonically induced analogue of tunable electromagnetically induced transparency without structurally or spatially asymmetry.
    He Y; Zhang J; Xu W; Guo C; Liu K; Yuan X; Zhu Z
    Sci Rep; 2019 Dec; 9(1):20312. PubMed ID: 31889081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analogue of electromagnetically induced transparency in integrated plasmonics with radiative and subradiant resonators.
    Wang T; Zhang Y; Hong Z; Han Z
    Opt Express; 2014 Sep; 22(18):21529-34. PubMed ID: 25321531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable multiple phase-coupled plasmon-induced transparencies in graphene metamaterials.
    Zeng C; Cui Y; Liu X
    Opt Express; 2015 Jan; 23(1):545-51. PubMed ID: 25835700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.