These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31684488)

  • 1. Three-dimensional ultra-broadband absorber based on novel zigzag-shaped structure.
    Ji W; Cai T; Wang G; Sun Y; Li H; Wang C; Zhang C; Zhang Q
    Opt Express; 2019 Oct; 27(22):32835-32845. PubMed ID: 31684488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-light planar meta-absorber with wideband and full-polarization properties.
    Du Z; Liang J; Cai T; Wang X; Zhang Q; Deng T; Wu B; Mao R; Wang D
    Opt Express; 2021 Mar; 29(5):6434-6444. PubMed ID: 33726164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance and broadband chirality-dependent absorber based on planar spiral metasurface.
    Wang C; Liang J; Xiao Y; Cai T; Hou H; Li H
    Opt Express; 2019 May; 27(10):14942-14950. PubMed ID: 31163935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures.
    Najim M; Modi G; Mishra YK; Adelung R; Singh D; Agarwala V
    Phys Chem Chem Phys; 2015 Sep; 17(35):22923-33. PubMed ID: 26267361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Ultra-Broadband and Highly-Efficient Metamaterial Absorber with Stand-Up Gradient Impedance Graphene Films.
    Wu B; Chen B; Ma S; Zhang D; Zu HR
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-Printed Low-Cost Dielectric-Resonator-Based Ultra-Broadband Microwave Absorber Using Carbon-Loaded Acrylonitrile Butadiene Styrene Polymer.
    Ren J; Yin JY
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30036968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermally Tunable Ultra-wideband Metamaterial Absorbers based on Three-dimensional Water-substrate construction.
    Shen Y; Zhang J; Pang Y; Zheng L; Wang J; Ma H; Qu S
    Sci Rep; 2018 Mar; 8(1):4423. PubMed ID: 29535316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband microwave absorption utilizing water-based metamaterial structures.
    Zhao J; Wei S; Wang C; Chen K; Zhu B; Jiang T; Feng Y
    Opt Express; 2018 Apr; 26(7):8522-8531. PubMed ID: 29715818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating.
    Du C; Zhou D; Guo HH; Pang YQ; Shi HY; Liu WF; Su JZ; Singh C; Trukhanov S; Trukhanov A; Panina L; Xu Z
    Nanoscale; 2020 May; 12(17):9769-9775. PubMed ID: 32324192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of an Ultra-Wideband Transparent Wave Absorber.
    Dai H; Li S; Dong P; Ma Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-thin and broadband surface wave meta-absorber.
    Deng T; Liang J; Cai T; Wang C; Wang X; Lou J; Du Z; Wang D
    Opt Express; 2021 Jun; 29(12):19193-19201. PubMed ID: 34154160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transparent broadband absorber based on a multilayer ITO conductive film.
    Zheng J; Zheng H; Pang Y; Qu B; Xu Z
    Opt Express; 2023 Jan; 31(3):3731-3742. PubMed ID: 36785359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-Broadband Absorber with Large Angular Stability Based on Frequency Selective Surface.
    Zhao S; Li W; Li Z; Shu H; Qi K; Yin H
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-performance meta-absorber for the surface wave under the spoof surface plasmon polariton mode.
    Deng T; Liang J; Lou J; Zhang C; Du Z; Wang C; Cai T
    Opt Express; 2021 Mar; 29(5):7558-7567. PubMed ID: 33726255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of a Broadband Microwave Composite Thin Film Absorber.
    Zhang Y; Gao Y; Yang S; Li Z; Wang X; Zhang J
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers.
    Butun S; Aydin K
    Opt Express; 2014 Aug; 22(16):19457-68. PubMed ID: 25321029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Causal optimal and optically transparent ultra-wideband microwave metamaterials absorber with high angular stability.
    Li J; Shi L; Chen H; Qu L; Yi Y; Zhang Q; Ma Y; Wang J
    Opt Express; 2023 Dec; 31(26):44385-44400. PubMed ID: 38178511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A broadband terahertz metamaterial absorber enabled by the simple design of a rectangular-shaped resonator with an elongated slot.
    Wang BX; Tang C; Niu Q; He Y; Chen R
    Nanoscale Adv; 2019 Sep; 1(9):3621-3625. PubMed ID: 36133543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.
    Yin X; Long C; Li J; Zhu H; Chen L; Guan J; Li X
    Sci Rep; 2015 Oct; 5():15367. PubMed ID: 26477740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.