These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31684491)

  • 1. Hole transport layer selection toward efficient colloidal PbS quantum dot solar cells.
    Yang G; Zhu Y; Huang J; Xu X; Cui S; Lu Z
    Opt Express; 2019 Sep; 27(20):A1338-A1349. PubMed ID: 31684491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2D-MoS
    Tulsani SR; Rath AK; Late DJ
    Nanoscale Adv; 2019 Apr; 1(4):1387-1394. PubMed ID: 36132588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.
    Zhang N; Neo DC; Tazawa Y; Li X; Assender HE; Compton RG; Watt AA
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21417-22. PubMed ID: 27421066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering.
    Huang Q; Pan J; Zhang Y; Chen J; Tao Z; He C; Zhou K; Tu Y; Lei W
    Opt Express; 2016 Nov; 24(23):25955-25963. PubMed ID: 27857334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Efficient and Low Turn-On Voltage Quantum Dot Light-Emitting Diodes by Using a Stepwise Hole-Transport Layer.
    Ji W; Lv Y; Jing P; Zhang H; Wang J; Zhang H; Zhao J
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):15955-60. PubMed ID: 26137935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the photovoltaic performance for PbS QD thin film solar cells through interface engineering.
    Yang Y; Rao Z; Xu Q; Liang Y; Yang L
    J Colloid Interface Sci; 2022 Dec; 627():562-568. PubMed ID: 35870408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of colloidal PbS quantum dot-based solar cells with near infrared emission.
    Lim S; Kim Y; Lee J; Han CJ; Kang J; Kim J
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9346-50. PubMed ID: 25971063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doped Organic Hole Extraction Layers in Efficient PbS and AgBiS
    Becker-Koch D; Albaladejo-Siguan M; Hofstetter YJ; Solomeshch O; Pohl D; Rellinghaus B; Tessler N; Vaynzof Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18750-18757. PubMed ID: 33855853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells.
    Biondi M; Choi MJ; Ouellette O; Baek SW; Todorović P; Sun B; Lee S; Wei M; Li P; Kirmani AR; Sagar LK; Richter LJ; Hoogland S; Lu ZH; García de Arquer FP; Sargent EH
    Adv Mater; 2020 Apr; 32(17):e1906199. PubMed ID: 32196136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small Molecule-Modified Hole Transport Layer Targeting Low Turn-On-Voltage, Bright, and Efficient Full-Color Quantum Dot Light Emitting Diodes.
    Li J; Liang Z; Su Q; Jin H; Wang K; Xu G; Xu X
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3865-3873. PubMed ID: 29302957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers.
    Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution-processed double-layered hole transport layers for highly-efficient cadmium-free quantum-dot light-emitting diodes.
    Chen F; Wang LJ; Li X; Deng ZB; Teng F; Tang AW
    Opt Express; 2020 Mar; 28(5):6134-6145. PubMed ID: 32225869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Charge Collection from Colloidal Quantum Dot Photovoltaics by Single-Walled Carbon Nanotube Incorporation.
    Yang J; Lee J; Lee J; Yi W
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33759-33769. PubMed ID: 31430430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Power Conversion Efficiency via Hybrid Ligand Exchange Treatment of p-Type PbS Quantum Dots.
    Teh ZL; Hu L; Zhang Z; Gentle AR; Chen Z; Gao Y; Yuan L; Hu Y; Wu T; Patterson RJ; Huang S
    ACS Appl Mater Interfaces; 2020 May; 12(20):22751-22759. PubMed ID: 32347092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the Efficiency and Stability of PbS Quantum Dot Solar Cells through Engineering an Ultrathin NiO Nanocrystalline Interlayer.
    Liu S; Hu L; Huang S; Zhang W; Ma J; Wang J; Guan X; Lin CH; Kim J; Wan T; Lei Q; Chu D; Wu T
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46239-46246. PubMed ID: 32929953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significant Enhancement in Quantum Dot Light-Emitting Device Stability via a Cascading Hole Transport Layer.
    Davidson-Hall T; Aziz H
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16782-16791. PubMed ID: 32181638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-induced surface modification to improve the performance of lead sulfide quantum dot solar cell.
    Tulsani SR; Rath AK
    J Colloid Interface Sci; 2018 Jul; 522():120-125. PubMed ID: 29579563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells.
    Sun Z; Sitbon G; Pons T; Bakulin AA; Chen Z
    Sci Rep; 2015 May; 5():10626. PubMed ID: 26024021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells.
    Gao J; Perkins CL; Luther JM; Hanna MC; Chen HY; Semonin OE; Nozik AJ; Ellingson RJ; Beard MC
    Nano Lett; 2011 Aug; 11(8):3263-6. PubMed ID: 21688813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient non-fullerene organic solar cells employing aqueous solution-processed MoO
    Li Y; Li P; Qu M; Liu F; Wei B; Chen G
    Nanotechnology; 2023 May; 34(28):. PubMed ID: 37059082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.