BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31684493)

  • 1. Daily metre-scale mapping of water turbidity using CubeSat imagery.
    Vanhellemont Q
    Opt Express; 2019 Sep; 27(20):A1372-A1399. PubMed ID: 31684493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry.
    Vanhellemont Q
    Opt Express; 2020 Sep; 28(20):29948-29965. PubMed ID: 33114883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of chlorophyll a content in inland turbidity waters using WorldView-2 imagery: a case study of the Guanting Reservoir, Beijing, China.
    Wang X; Gong Z; Pu R
    Environ Monit Assess; 2018 Sep; 190(10):620. PubMed ID: 30269190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atmospheric correction algorithm over coastal and inland waters based on the red and NIR bands: application to Landsat-8/OLI and VNREDSat-1/NAOMI observations.
    Ngoc DD; Loisel H; Duforêt-Gaurier L; Jamet C; Vantrepotte V; Goyens C; Xuan HC; Minh NN; Van TN
    Opt Express; 2019 Oct; 27(22):31676-31697. PubMed ID: 31684396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of eight band SuperDove imagery for aquatic applications.
    Vanhellemont Q
    Opt Express; 2023 Apr; 31(9):13851-13874. PubMed ID: 37157262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UV-NIR approach with non-zero water-leaving radiance approximation for atmospheric correction of satellite imagery in inland and coastal zones.
    Singh RK; Shanmugam P; He X; Schroeder T
    Opt Express; 2019 Aug; 27(16):A1118-A1145. PubMed ID: 31510495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance across WorldView-2 and RapidEye for reproducible seagrass mapping.
    Coffer MM; Schaeffer BA; Zimmerman RC; Hill V; Li J; Islam KA; Whitman PJ
    Remote Sens Environ; 2020 Dec; 250():112036. PubMed ID: 34334824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Innovative GOCI algorithm to derive turbidity in highly turbid waters: a case study in the Zhejiang coastal area.
    Qiu Z; Zheng L; Zhou Y; Sun D; Wang S; Wu W
    Opt Express; 2015 Sep; 23(19):A1179-93. PubMed ID: 26406748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.
    Wang M; Shi W; Jiang L; Voss K
    Opt Express; 2016 Sep; 24(18):20437-53. PubMed ID: 27607649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of underwater visibility in coastal and inland waters using remote sensing data.
    Kulshreshtha A; Shanmugam P
    Environ Monit Assess; 2017 Apr; 189(4):199. PubMed ID: 28361489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of wetland turbidity using multi-temporal Landsat-8 and Landsat-9 satellite imagery in the Bisalpur wetland, Rajasthan, India.
    Singh R; Saritha V; Pande CB
    Environ Res; 2024 Jan; 241():117638. PubMed ID: 37972812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters.
    Pahlevan N; Roger JC; Ahmad Z
    Opt Express; 2017 Mar; 25(6):6015-6035. PubMed ID: 28380959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Polymer Atmospheric Correction Algorithm for Hyperspectral Remote Sensing Imagery over Coastal Waters.
    Soppa MA; Silva B; Steinmetz F; Keith D; Scheffler D; Bohn N; Bracher A
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of satellite reflectance algorithms for estimating turbidity and cyanobacterial concentrations in productive freshwaters using hyperspectral aircraft imagery and dense coincident surface observations.
    Beck R; Xu M; Zhan S; Johansen R; Liu H; Tong S; Yang B; Shu S; Wu Q; Wang S; Berling K; Murray A; Emery E; Reif M; Harwood J; Young J; Nietch C; Macke D; Martin M; Stillings G; Stumpf R; Su H; Ye Z; Huang Y
    J Great Lakes Res; 2019 Jun; 45(3):413-433. PubMed ID: 32831462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea.
    Neukermans G; Ruddick K; Bernard E; Ramon D; Nechad B; Deschamps PY
    Opt Express; 2009 Aug; 17(16):14029-52. PubMed ID: 19654812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters.
    Ruddick KG; Ovidio F; Rijkeboer M
    Appl Opt; 2000 Feb; 39(6):897-912. PubMed ID: 18337965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complementary water quality observations from high and medium resolution Sentinel sensors by aligning chlorophyll-
    Warren MA; Simis SGH; Selmes N
    Remote Sens Environ; 2021 Nov; 265():112651. PubMed ID: 34732943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Algorithms at Satellite Wavelengths for Total Suspended Matter in Tropical Coastal Waters.
    Ouillon S; Douillet P; Petrenko A; Neveux J; Dupouy C; Froidefond JM; Andréfouët S; Muñoz-Caravaca A
    Sensors (Basel); 2008 Jul; 8(7):4165-4185. PubMed ID: 27879929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia.
    Dorji P; Fearns P
    PLoS One; 2017; 12(4):e0175042. PubMed ID: 28380059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.