These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31684513)

  • 1. Coherent generation and manipulation of entangled stationary photons based on a multiple degrees of freedom quantum memory.
    Qiu TH; Li H; Xie M; Liu Q; Ma HY
    Opt Express; 2019 Sep; 27(20):27477-27487. PubMed ID: 31684513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct transfer of classical non-separable states into hybrid entangled two photon states.
    Jabir MV; Apurv Chaitanya N; Mathew M; Samanta GK
    Sci Rep; 2017 Aug; 7(1):7331. PubMed ID: 28779165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of hybrid polarization-orbital angular momentum entangled states.
    Nagali E; Sciarrino F
    Opt Express; 2010 Aug; 18(17):18243-8. PubMed ID: 20721215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creating heralded hyper-entangled photons using Rydberg atoms.
    Ghosh S; Rivera N; Eisenstein G; Kaminer I
    Light Sci Appl; 2021 May; 10(1):100. PubMed ID: 33976109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental realization of entanglement in multiple degrees of freedom between two quantum memories.
    Zhang W; Ding DS; Dong MX; Shi S; Wang K; Liu SL; Li Y; Zhou ZY; Shi BS; Guo GC
    Nat Commun; 2016 Nov; 7():13514. PubMed ID: 27841274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum teleportation of multiple degrees of freedom of a single photon.
    Wang XL; Cai XD; Su ZE; Chen MC; Wu D; Li L; Liu NL; Lu CY; Pan JW
    Nature; 2015 Feb; 518(7540):516-9. PubMed ID: 25719668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Generation of Narrow-band Hyperentangled Photons.
    Zhao TM; Ihn YS; Kim YH
    Phys Rev Lett; 2019 Mar; 122(12):123607. PubMed ID: 30978083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angular two-photon interference and angular two-qubit states.
    Jha AK; Leach J; Jack B; Franke-Arnold S; Barnett SM; Boyd RW; Padgett MJ
    Phys Rev Lett; 2010 Jan; 104(1):010501. PubMed ID: 20366353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interference of Single Photons Emitted by Entangled Atoms in Free Space.
    Araneda G; Higginbottom DB; Slodička L; Colombe Y; Blatt R
    Phys Rev Lett; 2018 May; 120(19):193603. PubMed ID: 29799265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of hyper-entangled photons in a hot atomic vapor.
    Wang C; Lee CH; Kim Y; Kim YH
    Opt Lett; 2020 Apr; 45(7):1802-1805. PubMed ID: 32236003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete tunable color entanglement.
    Ramelow S; Ratschbacher L; Fedrizzi A; Langford NK; Zeilinger A
    Phys Rev Lett; 2009 Dec; 103(25):253601. PubMed ID: 20366255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semideterministic Entanglement between a Single Photon and an Atomic Ensemble.
    Li J; Zhou MT; Yang CW; Sun PF; Liu JL; Bao XH; Pan JW
    Phys Rev Lett; 2019 Oct; 123(14):140504. PubMed ID: 31702192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information.
    Fickler R; Lapkiewicz R; Huber M; Lavery MP; Padgett MJ; Zeilinger A
    Nat Commun; 2014 Jul; 5():4502. PubMed ID: 25073906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of quantum recoherence of photons by spatial propagation.
    Bouchard F; Harris J; Mand H; Bent N; Santamato E; Boyd RW; Karimi E
    Sci Rep; 2015 Oct; 5():15330. PubMed ID: 26469000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum storage of orbital angular momentum entanglement in an atomic ensemble.
    Ding DS; Zhang W; Zhou ZY; Shi S; Xiang GY; Wang XS; Jiang YK; Shi BS; Guo GC
    Phys Rev Lett; 2015 Feb; 114(5):050502. PubMed ID: 25699427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Qudit-teleportation for photons with linear optics.
    Goyal SK; Boukama-Dzoussi PE; Ghosh S; Roux FS; Konrad T
    Sci Rep; 2014 Apr; 4():4543. PubMed ID: 24686274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials.
    Stav T; Faerman A; Maguid E; Oren D; Kleiner V; Hasman E; Segev M
    Science; 2018 Sep; 361(6407):1101-1104. PubMed ID: 30213909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Orbital Angular Momentum Quantum States Empowered by Metasurfaces.
    Wang M; Chen L; Choi DY; Huang S; Wang Q; Tu C; Cheng H; Tian J; Li Y; Chen S; Wang HT
    Nano Lett; 2023 May; 23(9):3921-3928. PubMed ID: 37102437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization control of single photon quantum orbital angular momentum states.
    Nagali E; Sciarrino F; De Martini F; Piccirillo B; Karimi E; Marrucci L; Santamato E
    Opt Express; 2009 Oct; 17(21):18745-59. PubMed ID: 20372607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring Nonlinear Metamaterials for the Controlling of Spatial Quantum Entanglement.
    Ming Y; Liu Y; Chen W; Yan Y; Zhang H
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.