These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31684518)

  • 1. Deep learning for accelerated all-dielectric metasurface design.
    Nadell CC; Huang B; Malof JM; Padilla WJ
    Opt Express; 2019 Sep; 27(20):27523-27535. PubMed ID: 31684518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unique physics-inspired deep-learning-based platform introducing a generalized tool for rapid optical-response prediction and parametric-optimization for all-dielectric metasurfaces.
    Noureen S; Mehmood MQ; Ali M; Rehman B; Zubair M; Massoud Y
    Nanoscale; 2022 Nov; 14(44):16436-16449. PubMed ID: 36326120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cyclical deep learning based framework for simultaneous inverse and forward design of nanophotonic metasurfaces.
    Mall A; Patil A; Sethi A; Kumar A
    Sci Rep; 2020 Nov; 10(1):19427. PubMed ID: 33173073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic nanostructure design and characterization via Deep Learning.
    Malkiel I; Mrejen M; Nagler A; Arieli U; Wolf L; Suchowski H
    Light Sci Appl; 2018; 7():60. PubMed ID: 30863544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep neural network-based automatic metasurface design with a wide frequency range.
    Ghorbani F; Beyraghi S; Shabanpour J; Oraizi H; Soleimani H; Soleimani M
    Sci Rep; 2021 Mar; 11(1):7102. PubMed ID: 33782525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Meets Nanophotonics: A Generalized Accurate Predictor for Near Fields and Far Fields of Arbitrary 3D Nanostructures.
    Wiecha PR; Muskens OL
    Nano Lett; 2020 Jan; 20(1):329-338. PubMed ID: 31825227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A knowledge-inherited learning for intelligent metasurface design and assembly.
    Jia Y; Qian C; Fan Z; Cai T; Li EP; Chen H
    Light Sci Appl; 2023 Mar; 12(1):82. PubMed ID: 36997520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design.
    Qiu T; Shi X; Wang J; Li Y; Qu S; Cheng Q; Cui T; Sui S
    Adv Sci (Weinh); 2019 Jun; 6(12):1900128. PubMed ID: 31380164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generative Model for the Inverse Design of Metasurfaces.
    Liu Z; Zhu D; Rodrigues SP; Lee KT; Cai W
    Nano Lett; 2018 Oct; 18(10):6570-6576. PubMed ID: 30207735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural network enabled metasurface design for phase manipulation.
    Jiang L; Li X; Wu Q; Wang L; Gao L
    Opt Express; 2021 Jan; 29(2):2521-2528. PubMed ID: 33726445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of metasurface spectral response based on a deep neural network.
    Chen Y; Ding Z; Wang J; Zhou J; Zhang M
    Opt Lett; 2022 Oct; 47(19):5092-5095. PubMed ID: 36181194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural-adjoint method for the inverse design of all-dielectric metasurfaces.
    Deng Y; Ren S; Fan K; Malof JM; Padilla WJ
    Opt Express; 2021 Mar; 29(5):7526-7534. PubMed ID: 33726252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental realization of a terahertz all-dielectric metasurface absorber.
    Liu X; Fan K; Shadrivov IV; Padilla WJ
    Opt Express; 2017 Jan; 25(1):191-201. PubMed ID: 28085806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metasurface design with a complex residual neural network.
    Liu K; Sun C
    Appl Opt; 2023 Feb; 62(5):1200-1205. PubMed ID: 36821218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the design space of photonic topological states via deep learning.
    Singh R; Agarwal A; W Anthony B
    Opt Express; 2020 Sep; 28(19):27893-27902. PubMed ID: 32988072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-element neural networks for solving differential equations.
    Ramuhalli P; Udpa L; Udpa SS
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1381-92. PubMed ID: 16342482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generative Deep Neural Networks for Inverse Materials Design Using Backpropagation and Active Learning.
    Chen CT; Gu GX
    Adv Sci (Weinh); 2020 Mar; 7(5):1902607. PubMed ID: 32154072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial neural network discovery of a switchable metasurface reflector.
    Thompson JR; Burrow JA; Shah PJ; Slagle J; Harper ES; Van Rynbach A; Agha I; Mills MS
    Opt Express; 2020 Aug; 28(17):24629-24656. PubMed ID: 32907001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.