BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 31684530)

  • 1. Additive manufacturing of resonant fluidic sensors based on photonic bandgap waveguides for terahertz applications.
    Cao Y; Nallappan K; Guerboukha H; Gervais T; Skorobogatiy M
    Opt Express; 2019 Sep; 27(20):27663-27681. PubMed ID: 31684530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printed hollow core terahertz Bragg waveguides with defect layers for surface sensing applications.
    Li J; Nallappan K; Guerboukha H; Skorobogatiy M
    Opt Express; 2017 Feb; 25(4):4126-4144. PubMed ID: 28241619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonant Gas Sensing in the Terahertz Spectral Range Using Two-Wire Phase-Shifted Waveguide Bragg Gratings.
    Cao Y; Nallappan K; Xu G; Skorobogatiy M
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic Bragg waveguide platform for multichannel resonant sensing applications in the THz range.
    Li J; Qu H; Wang J
    Biomed Opt Express; 2020 May; 11(5):2476-2489. PubMed ID: 32499938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz microfluidic sensing using a parallel-plate waveguide sensor.
    Astley V; Reichel K; Mendis R; Mittleman DM
    J Vis Exp; 2012 Aug; (66):e4304. PubMed ID: 22951593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous monitoring the real and imaginary parts of the analyte refractive index using liquid-core photonic bandgap Bragg fibers.
    Li J; Qu H; Skorobogatiy M
    Opt Express; 2015 Sep; 23(18):22963-76. PubMed ID: 26368402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photonic bandgap fiber-based Surface Plasmon Resonance sensors.
    Gauvreau B; Hassani A; Fassi Fehri M; Kabashin A; Skorobogatiy MA
    Opt Express; 2007 Sep; 15(18):11413-26. PubMed ID: 19547499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terahertz refractive index sensors using dielectric pipe waveguides.
    You B; Lu JY; Yu CP; Liu TA; Peng JL
    Opt Express; 2012 Mar; 20(6):5858-66. PubMed ID: 22418463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-band terahertz metamaterial sensor and its sensing capacity enhanced with a central-relief design.
    Guo S; Li C; Wang D; Chen W; Gao S; Wu G; Xiong J
    Appl Opt; 2024 Mar; 63(8):1962-1970. PubMed ID: 38568636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-Free Optical Biochemical Sensors via Liquid-Cladding-Induced Modulation of Waveguide Modes.
    Tran NHT; Kim J; Phan TB; Khym S; Ju H
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31478-31487. PubMed ID: 28849907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Waveguide Coupled Ring Cavity for a Non-Resonant Type Refractive Index Sensor.
    Kwon SH
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29099740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Squeezed hollow-core photonic Bragg fiber for surface sensing applications.
    Li J; Qu H; Skorobogatiy M
    Opt Express; 2016 Jul; 24(14):15687-701. PubMed ID: 27410841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond laser written optofluidic sensor: Bragg Grating Waveguide evanescent probing of microfluidic channel.
    Maselli V; Grenier JR; Ho S; Herman PR
    Opt Express; 2009 Jul; 17(14):11719-29. PubMed ID: 19582086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terahertz ultrasensitive dual-core photonic crystal fiber microfluidic sensor for detecting high-absorption analytes.
    Li S; Zhang H; Fan F; Chang S
    Appl Opt; 2021 Jul; 60(19):5716-5722. PubMed ID: 34263866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical Investigation of a Highly Sensitive Refractive-Index Sensor Based on TM₀ Waveguide Mode Resonance Excited in an Asymmetric Metal-Cladding Dielectric Waveguide Structure.
    Wang X; Wu X; Zhu J; Pang Z; Yang H; Qi Y
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30857160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic bandgap structure with plasmonic inclusions for refractive index sensing in optofluidics at terahertz frequencies.
    Jose J
    Opt Lett; 2017 Feb; 42(3):470-473. PubMed ID: 28146503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid terahertz plasmonic waveguide for sensing applications.
    You B; Lu JY; Liu TA; Peng JL
    Opt Express; 2013 Sep; 21(18):21087-96. PubMed ID: 24103983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Volatile Gas Sensing through Terahertz Pipe Waveguide.
    Lu JY; You B; Wang JY; Jhuo SS; Hung TY; Yu CP
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33153176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and Analysis of an Opto-Fluidic Sensor for Lab-on-a-Chip Applications.
    Muniswamy V; Bangalore Muniraju C; Kumar Pattnaik P; Krishnaswamy N
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring the spectral response of liquid waveguide diagnostic platforms.
    Zhao Y; Phillips B; Ozcelik D; Parks J; Measor P; Gulbransen D; Schmidt H; Hawkins AR
    J Biophotonics; 2012 Aug; 5(8-9):703-11. PubMed ID: 22589084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.