These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31684637)

  • 21. Metasurface supporting quasi-BIC for optical trapping and Raman-spectroscopy of biological nanoparticles.
    Hasan MR; Hellesø OG
    Opt Express; 2023 Feb; 31(4):6782-6795. PubMed ID: 36823928
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical analysis of an optical nanoscale particles trapping device based on a slotted nanobeam cavity.
    Zhang S; Yong Z; Shi Y; He S
    Sci Rep; 2016 Oct; 6():35977. PubMed ID: 27786248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bio-Molecular Applications of Recent Developments in Optical Tweezers.
    Choudhary D; Mossa A; Jadhav M; Cecconi C
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Origin and Future of Plasmonic Optical Tweezers.
    Huang JS; Yang YT
    Nanomaterials (Basel); 2015 Jun; 5(2):1048-1065. PubMed ID: 28347051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On chip shapeable optical tweezers.
    Renaut C; Cluzel B; Dellinger J; Lalouat L; Picard E; Peyrade D; Hadji E; de Fornel F
    Sci Rep; 2013; 3():2290. PubMed ID: 23887310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping.
    Kotsifaki DG; Truong VG; Chormaic SN
    Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of Germanium Nanospheres as High-Precision Optical Tweezers Probes.
    Sudhakar S; Rajendran P; Schäffer E
    Methods Mol Biol; 2022; 2478():25-35. PubMed ID: 36063317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combined acoustic and optical trapping.
    Thalhammer G; Steiger R; Meinschad M; Hill M; Bernet S; Ritsch-Marte M
    Biomed Opt Express; 2011 Oct; 2(10):2859-70. PubMed ID: 22025990
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical Manipulation of nanoparticles by simultaneous electric and magnetic field enhancement within diabolo nanoantenna.
    Hameed N; Nouho Ali A; Baida FI
    Sci Rep; 2017 Oct; 7(1):12806. PubMed ID: 28993675
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evanescent field trapping of nanoparticles using nanostructured ultrathin optical fibers.
    Daly M; Truong VG; Chormaic SN
    Opt Express; 2016 Jun; 24(13):14470-82. PubMed ID: 27410600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-induced back action actuated nanopore electrophoresis (SANE).
    Raza MU; Peri SSS; Ma LC; Iqbal SM; Alexandrakis G
    Nanotechnology; 2018 Oct; 29(43):435501. PubMed ID: 30073973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable nanophotonic array traps with enhanced force and stability.
    Ye F; Soltani M; Inman JT; Wang MD
    Opt Express; 2017 Apr; 25(7):7907-7918. PubMed ID: 28380908
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Near-Field, On-Chip Optical Brownian Ratchets.
    Wu SH; Huang N; Jaquay E; Povinelli ML
    Nano Lett; 2016 Aug; 16(8):5261-6. PubMed ID: 27403605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers.
    Wu MY; Ling DX; Ling L; Li W; Li YQ
    Sci Rep; 2017 Feb; 7():42930. PubMed ID: 28211526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical trapping of nanoparticles with tunable inter-distance using a multimode slot cavity.
    Wang L; Cao Y; Zhu T; Feng R; Sun F; Ding W
    Opt Express; 2017 Nov; 25(24):29761-29768. PubMed ID: 29221012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range.
    Righini M; Volpe G; Girard C; Petrov D; Quidant R
    Phys Rev Lett; 2008 May; 100(18):186804. PubMed ID: 18518404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical tweezing and binding at high irradiation powers on black-Si.
    Shoji T; Mototsuji A; Balčytis A; Linklater D; Juodkazis S; Tsuboi Y
    Sci Rep; 2017 Sep; 7(1):12298. PubMed ID: 28951618
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optofluidic Particle Manipulation: Optical Trapping in a Thin-Membrane Microchannel.
    Walker ZJ; Wells T; Belliston E; Walker SB; Zeller C; Sampad MJN; Saiduzzaman SM; Schmidt H; Hawkins AR
    Biosensors (Basel); 2022 Aug; 12(9):. PubMed ID: 36140075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.