These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31684653)

  • 1. Faster generation of holographic videos of objects moving in space using a spherical hologram-based 3-D rotational motion compensation scheme.
    Cao HK; Kim ES
    Opt Express; 2019 Sep; 27(20):29139-29157. PubMed ID: 31684653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated generation of holographic videos of 3-D objects in rotational motion using a curved hologram-based rotational-motion compensation method.
    Cao HK; Lin SF; Kim ES
    Opt Express; 2018 Aug; 26(16):21279-21300. PubMed ID: 30119433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MPEG-based novel look-up table for rapid generation of video holograms of fast-moving three-dimensional objects.
    Dong XB; Kim SC; Kim ES
    Opt Express; 2014 Apr; 22(7):8047-67. PubMed ID: 24718180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-directional motion compensation-based novel-look-up-table for video hologram generation of three-dimensional objects freely maneuvering in space.
    Dong XB; Kim SC; Kim ES
    Opt Express; 2014 Jul; 22(14):16925-44. PubMed ID: 25090509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Faster generation of holographic video of 3-D scenes with a Fourier spectrum-based NLUT method.
    Cao H; Jin X; Ai L; Kim ES
    Opt Express; 2021 Nov; 29(24):39738-39754. PubMed ID: 34809331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-scale one-dimensional NLUT method for accelerated generation of holographic videos with the least memory capacity.
    Cao HK; Kim ES
    Opt Express; 2019 Apr; 27(9):12673-12691. PubMed ID: 31052806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Object tracking mask-based NLUT on GPUs for real-time generation of holographic videos of three-dimensional scenes.
    Kwon MW; Kim SC; Yoon SE; Ho YS; Kim ES
    Opt Express; 2015 Feb; 23(3):2101-20. PubMed ID: 25836082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast one-step calculation of holographic videos of three-dimensional scenes by combined use of baseline and depth-compensating principal fringe patterns.
    Kim SC; Kim ES
    Opt Express; 2014 Sep; 22(19):22513-27. PubMed ID: 25321721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Object-based digital hologram segmentation and motion compensation.
    Birnbaum T; Blinder D; Muhamad RK; Schretter C; Symeonidou A; Schelkens P
    Opt Express; 2020 Apr; 28(8):11861-11882. PubMed ID: 32403688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table.
    Kim SC; Dong XB; Kwon MW; Kim ES
    Opt Express; 2013 May; 21(9):11568-84. PubMed ID: 23670014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerated one-step generation of full-color holographic videos using a color-tunable novel-look-up-table method for holographic three-dimensional television broadcasting.
    Kim SC; Dong XB; Kim ES
    Sci Rep; 2015 Sep; 5():14056. PubMed ID: 26358334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-directional motion-compensation mask-based novel look-up table on graphics processing units for video-rate generation of digital holographic videos of three-dimensional scenes.
    Kwon MW; Kim SC; Kim ES
    Appl Opt; 2016 Jan; 55(3):A22-31. PubMed ID: 26835954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient holographic video generation based on rotational transformation of wavefields.
    Symeonidou A; Kizhakkumkara RM; Birnbaum T; Schelkens P
    Opt Express; 2019 Dec; 27(26):37383-37399. PubMed ID: 31878520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single SLM full-color holographic three-dimensional video display based on image and frequency-shift multiplexing.
    Lin SF; Cao HK; Kim ES
    Opt Express; 2019 May; 27(11):15926-15942. PubMed ID: 31163782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast Hologram Calculation Method Based on Wavefront Precise Diffraction.
    Wang Z; Li Y; Tang Z; Li Z; Wang D
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast generation of three-dimensional video holograms by combined use of data compression and lookup table techniques.
    Kim SC; Yoon JH; Kim ES
    Appl Opt; 2008 Nov; 47(32):5986-95. PubMed ID: 19002222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global motion compensation for compressing holographic videos.
    Blinder D; Schretter C; Schelkens P
    Opt Express; 2018 Oct; 26(20):25524-25533. PubMed ID: 30469653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compact full-color holographic 3-D display based on undersampled computer-generated holograms and oblique projection imaging.
    Cao HK; Hwang YS; Kim ES; Jin X
    Opt Express; 2020 Nov; 28(24):35910-35926. PubMed ID: 33379697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavefront recording plane-like method for polygon-based holograms.
    Wang F; Blinder D; Ito T; Shimobaba T
    Opt Express; 2023 Jan; 31(2):1224-1233. PubMed ID: 36785162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional angle multiplexing by segmented spherical holography.
    Liu CJ; Jin FM; Wu Y; Wang J; Chen C
    Appl Opt; 2021 Jan; 60(1):155-161. PubMed ID: 33362085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.