These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 31684655)

  • 1. Experimental confirmation of plasmonic field cancellation under specific conditions of trapezoidal nanopatterns.
    Kang TY; Song H; Ahn H; Lee H; Kim S; Kim D; Kim K
    Opt Express; 2019 Sep; 27(20):29168-29177. PubMed ID: 31684655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the plasmonic properties of silver nanopatterns fabricated by shadow nanosphere lithography.
    Ingram W; He Y; Stone K; Dennis WM; Ye D; Zhao Y
    Nanotechnology; 2016 Sep; 27(38):385301. PubMed ID: 27518233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dispersion engineering with plasmonic nano structures for enhanced surface plasmon resonance sensing.
    Arora P; Talker E; Mazurski N; Levy U
    Sci Rep; 2018 Jun; 8(1):9060. PubMed ID: 29899340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic nearfield scanning probe with high transmission.
    Wang Y; Srituravanich W; Sun C; Zhang X
    Nano Lett; 2008 Sep; 8(9):3041-5. PubMed ID: 18720976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sub-10 nm near-field localization by plasmonic metal nanoaperture arrays with ultrashort light pulses.
    Lee H; Kim C; Kim D
    Sci Rep; 2015 Dec; 5():17584. PubMed ID: 26628326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel nano-plasmonic sensing platform based on vertical conductive bridge.
    Park HS; Park J; Kwak JY; Hwang GW; Jeong DS; Lee KS
    Sci Rep; 2021 Feb; 11(1):3184. PubMed ID: 33542425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers.
    König M; Rahmani M; Zhang L; Lei DY; Roschuk TR; Giannini V; Qiu CW; Hong M; Schlücker S; Maier SA
    ACS Nano; 2014 Sep; 8(9):9188-98. PubMed ID: 25136980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic nanopatterns of gold nanostructures indicate the excitation of surface plasmon modes of a wavelength of 50-100 nm by scanning near-field optical microscopy.
    Maas HJ; Heimel J; Fuchs H; Fischer UC; Weeber JC; Dereux A
    J Microsc; 2003 Mar; 209(Pt 3):241-8. PubMed ID: 12641769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation of dark plasmonic cavity modes via nonlinearly induced dipoles: applications to near-infrared plasmonic sensing.
    Biris CG; Panoiu NC
    Nanotechnology; 2011 Jun; 22(23):235502. PubMed ID: 21474872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmon-Enhanced Fluorescence of Carbon Nanodots in Gold Nanoslit Cavities.
    Bagra B; Zhang W; Zeng Z; Mabe T; Wei J
    Langmuir; 2019 Jul; 35(27):8903-8909. PubMed ID: 31246484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy.
    Umakoshi T; Saito Y; Verma P
    Nanoscale; 2016 Mar; 8(10):5634-40. PubMed ID: 26892672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring plasmonic properties of gold nanohole arrays for surface-enhanced Raman scattering.
    Zheng P; Cushing SK; Suri S; Wu N
    Phys Chem Chem Phys; 2015 Sep; 17(33):21211-9. PubMed ID: 25586930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative and Direct Near-Field Analysis of Plasmonic-Induced Transparency and the Observation of a Plasmonic Breathing Mode.
    Khunsin W; Dorfmüller J; Esslinger M; Vogelgesang R; Rockstuhl C; Etrich C; Kern K
    ACS Nano; 2016 Feb; 10(2):2214-24. PubMed ID: 26789080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced sensing performance from trapezoidal metallic gratings fabricated by laser interference lithography.
    Chai Y; Li F; Wang J; Karvinen P; Kuittinen M; Kang G
    Opt Lett; 2022 Feb; 47(4):1009-1012. PubMed ID: 35167581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gap surface plasmon polaritons enhanced by a plasmonic lens.
    Chul Kim H; Cheng X
    Opt Lett; 2011 Aug; 36(16):3082-4. PubMed ID: 21847167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study on the generation of a low-noise plasmonic hotspot by means of a trench-assisted circular nano-slit.
    Kim H; Lee SY; Koo S; Kim J; Park K; Lee D; Vazquez-Zuniga LA; Park N; Lee B; Jeong Y
    Opt Express; 2014 Nov; 22(22):26844-53. PubMed ID: 25401831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic crystal and plasmonic nanohole based label-free biodetection.
    Cetin AE; Topkaya SN
    Biosens Bioelectron; 2019 May; 132():196-202. PubMed ID: 30875631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules.
    Chen WT; Chen CJ; Wu PC; Sun S; Zhou L; Guo GY; Hsiao CT; Yang KY; Zheludev NI; Tsai DP
    Opt Express; 2011 Jun; 19(13):12837-42. PubMed ID: 21716526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape effect on a single-nanoparticle-based plasmonic nanosensor.
    Shen H; Lu G; Zhang T; Liu J; Gu Y; Perriat P; Martini M; Tillement O; Gong Q
    Nanotechnology; 2013 Jul; 24(28):285502. PubMed ID: 23792456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.