These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
549 related articles for article (PubMed ID: 31684724)
1. Self-Healable Conductive Nanocellulose Nanocomposites for Biocompatible Electronic Skin Sensor Systems. Han L; Cui S; Yu HY; Song M; Zhang H; Grishkewich N; Huang C; Kim D; Tam KMC ACS Appl Mater Interfaces; 2019 Nov; 11(47):44642-44651. PubMed ID: 31684724 [TBL] [Abstract][Full Text] [Related]
2. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Zheng C; Lu K; Lu Y; Zhu S; Yue Y; Xu X; Mei C; Xiao H; Wu Q; Han J Carbohydr Polym; 2020 Dec; 250():116905. PubMed ID: 33049881 [TBL] [Abstract][Full Text] [Related]
3. Healable, Adhesive, and Conductive Nanocomposite Hydrogels with Ultrastretchability for Flexible Sensors. Ma W; Cao W; Lu T; Jiang Z; Xiong R; Samal SK; Huang C ACS Appl Mater Interfaces; 2021 Dec; 13(48):58048-58058. PubMed ID: 34842414 [TBL] [Abstract][Full Text] [Related]
4. Tannic Acid-Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties. Hao S; Shao C; Meng L; Cui C; Xu F; Yang J ACS Appl Mater Interfaces; 2020 Dec; 12(50):56509-56521. PubMed ID: 33270440 [TBL] [Abstract][Full Text] [Related]
5. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. Zheng H; Lin N; He Y; Zuo B ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080 [TBL] [Abstract][Full Text] [Related]
6. Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Wang H; Li J; Yu X; Yan G; Tang X; Sun Y; Zeng X; Lin L Carbohydr Polym; 2021 Mar; 255():117443. PubMed ID: 33436232 [TBL] [Abstract][Full Text] [Related]
7. Skin-inspired nanofibrillated cellulose-reinforced hydrogels with high mechanical strength, long-term antibacterial, and self-recovery ability for wearable strain/pressure sensors. Wang S; Xiang J; Sun Y; Wang H; Du X; Cheng X; Du Z; Wang H Carbohydr Polym; 2021 Jun; 261():117894. PubMed ID: 33766379 [TBL] [Abstract][Full Text] [Related]
8. Cellulose nanocrystal mediated fast self-healing and shape memory conductive hydrogel for wearable strain sensors. Xiao G; Wang Y; Zhang H; Zhu Z; Fu S Int J Biol Macromol; 2021 Feb; 170():272-283. PubMed ID: 33359808 [TBL] [Abstract][Full Text] [Related]
9. Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel. Lu Y; Yue Y; Ding Q; Mei C; Xu X; Wu Q; Xiao H; Han J ACS Appl Mater Interfaces; 2021 Oct; 13(42):50281-50297. PubMed ID: 34637615 [TBL] [Abstract][Full Text] [Related]
10. Induction of polymer-grafted cellulose nanocrystals in hydrogel nanocomposites to increase anti-swelling, mechanical properties and conductive self-recovery for underwater strain sensing. Chen Y; Wu W; Cao X; Li B Int J Biol Macromol; 2024 Aug; 274(Pt 2):133410. PubMed ID: 38925178 [TBL] [Abstract][Full Text] [Related]
11. Self-healing and toughness cellulose nanocrystals nanocomposite hydrogels for strain-sensitive wearable flexible sensor. Pei Z; Yu Z; Li M; Bai L; Wang W; Chen H; Yang H; Wei D; Yang L Int J Biol Macromol; 2021 May; 179():324-332. PubMed ID: 33684432 [TBL] [Abstract][Full Text] [Related]
12. Multiple Weak H-Bonds Lead to Highly Sensitive, Stretchable, Self-Adhesive, and Self-Healing Ionic Sensors. Qiao H; Qi P; Zhang X; Wang L; Tan Y; Luan Z; Xia Y; Li Y; Sui K ACS Appl Mater Interfaces; 2019 Feb; 11(8):7755-7763. PubMed ID: 30699289 [TBL] [Abstract][Full Text] [Related]
13. Highly stretchable, self-healable and adhesive, thermal responsive conductive hydrogel loading nanocellulose complex for a flexible sensor. Chen C; Wang J; Xu Z; Chen N; Wang F Int J Biol Macromol; 2023 Aug; 247():125595. PubMed ID: 37394214 [TBL] [Abstract][Full Text] [Related]
14. Anisotropic, strong, self-adhesive and strain-sensitive hydrogels enabled by magnetically-oriented cellulose/polydopamine nanocomposites. Yan G; He S; Chen G; Tang X; Sun Y; Xu F; Zeng X; Lin L Carbohydr Polym; 2022 Jan; 276():118783. PubMed ID: 34823795 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of Janus-type nanocomposites from cellulose nanocrystals for self-healing hydrogels' flexible sensors. Sun Q; Xiao L; Nie Y; Wang W; Bai L; Chen H; Yang L; Yang H; Wei D Colloids Surf B Biointerfaces; 2022 Aug; 216():112554. PubMed ID: 35580460 [TBL] [Abstract][Full Text] [Related]
16. Antibacterial, Self-Adhesive, Recyclable, and Tough Conductive Composite Hydrogels for Ultrasensitive Strain Sensing. Fan L; Xie J; Zheng Y; Wei D; Yao D; Zhang J; Zhang T ACS Appl Mater Interfaces; 2020 May; 12(19):22225-22236. PubMed ID: 32315157 [TBL] [Abstract][Full Text] [Related]
17. Highly stretchable, self-healing, and degradable ionic conductive cellulose hydrogel for human motion monitoring. Li X; Ma Y; Li D; Lu S; Li Y; Li Z Int J Biol Macromol; 2022 Dec; 223(Pt A):1530-1538. PubMed ID: 36402382 [TBL] [Abstract][Full Text] [Related]
18. Skin-conformal MXene-doped wearable sensors with self-adhesive, dual-mode sensing, and high sensitivity for human motions and wireless monitoring. Sun Y; Wang S; Du X; Du Z; Wang H; Cheng X J Mater Chem B; 2021 Oct; 9(41):8667-8675. PubMed ID: 34610630 [TBL] [Abstract][Full Text] [Related]
19. A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications. Wang B; Dai L; Hunter LA; Zhang L; Yang G; Chen J; Zhang X; He Z; Ni Y Carbohydr Polym; 2021 Sep; 268():118210. PubMed ID: 34127214 [TBL] [Abstract][Full Text] [Related]
20. Nature-inspired self-powered cellulose nanofibrils hydrogels with high sensitivity and mechanical adaptability. Hu K; He P; Zhao Z; Huang L; Liu K; Lin S; Zhang M; Wu H; Chen L; Ni Y Carbohydr Polym; 2021 Jul; 264():117995. PubMed ID: 33910731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]