These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31684727)

  • 41. [Effect of temperature on the hydrolysis of some synthetic substrates by thrombin and trypsin].
    Kibirev VK
    Biokhimiia; 1981 Oct; 46(10):1799-806. PubMed ID: 7306600
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of soluble and immobilized trypsin kinetics: Implications for peptide synthesis.
    Sears PS; Clark DS
    Biotechnol Bioeng; 1993 Jun; 42(1):118-24. PubMed ID: 18609655
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pressure dependence of trypsin-catalyzed hydrolyses of specific substrates.
    Kunugi S; Fukuda M; Ise N
    Biochim Biophys Acta; 1982 May; 704(1):107-13. PubMed ID: 7093284
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [A secreted trypsin-like proteinase from Yersinia pseudotuberculosis].
    Burtseva TI; Buzoleva LS; Somov GP
    Biokhimiia; 1995 Oct; 60(10):1589-95. PubMed ID: 8555358
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Dependence of thrombin- and trypsin-catalyzed hydrolysis of N-alpha-arylsulfonyl-L-arginine methyl esters on the structure of acylamide part of substrates].
    Fedoriak DM; Kibirev VK; Sereĭskaia AA; Serebrianyĭ SB
    Biokhimiia; 1977 Sep; 42(9):1595-602. PubMed ID: 20997
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanopore single-molecule analysis of DNA-doxorubicin interactions.
    Yao F; Duan J; Wang Y; Zhang Y; Guo Y; Guo H; Kang X
    Anal Chem; 2015 Jan; 87(1):338-42. PubMed ID: 25493921
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Inhibition of serine proteases by steroids.
    Mayer M; Neufeld B; Finci Z
    Biochem Pharmacol; 1982 Sep; 31(18):2989-92. PubMed ID: 7138586
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Trypsin catalyzed hydrolysis of new chromogenic arginine substrates.
    Somorin O; Ameghashitsi L
    Biochem Int; 1987 Dec; 15(6):1189-96. PubMed ID: 3440026
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydrolysis of phenylthiazolones of p-guanidinophenylalanine and arginine by trypsin and related enzymes.
    Tsunematsu H; Hatanaka Y; Sugahara Y; Makisumi S
    J Biochem; 1983 Oct; 94(4):1119-25. PubMed ID: 6361008
    [TBL] [Abstract][Full Text] [Related]  

  • 50. One-Pot Species Release and Nanopore Detection in a Voltage-Stable Lipid Bilayer Platform.
    Kang X; Alibakhshi MA; Wanunu M
    Nano Lett; 2019 Dec; 19(12):9145-9153. PubMed ID: 31724865
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Substrate activation in the trypsin-catalyzed hydrolysis of benzoyl-L-arginine p-nitroanilide.
    Nakata H; Ishii SI
    Biochem Biophys Res Commun; 1970 Oct; 41(2):393-400. PubMed ID: 5534737
    [No Abstract]   [Full Text] [Related]  

  • 52. Kinetics and mechanism of catalysis by proteolytic enzymes. The kinetics of hydrolysis of esters of gamma-guanidino-L-alpha-toluene-p-sulphonamidobutyric acid by bovine trypsin and thrombin.
    Baird JB; Curragh EF; Elmore DT
    Biochem J; 1965 Sep; 96(3):733-8. PubMed ID: 5862413
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of a high-molecular-weight form of human acrosin. Comparison with human pancreatic trypsin.
    Anderson RA; Beyler SA; Mack SR; Zaneveld LJ
    Biochem J; 1981 Nov; 199(2):307-16. PubMed ID: 6803760
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Solid-State Nanopore Single-Molecule Sensing of DNAzyme Cleavage Reaction Assisted with Nucleic Acid Nanostructure.
    Zhu L; Xu Y; Ali I; Liu L; Wu H; Lu Z; Liu Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26555-26565. PubMed ID: 30016075
    [TBL] [Abstract][Full Text] [Related]  

  • 55. DNA-directed trypsin immobilization on a polyamidoamine dendrimer-modified capillary to form a renewable immobilized enzyme microreactor.
    Wu N; Wang S; Yang Y; Song J; Su P; Yang Y
    Int J Biol Macromol; 2018 Jul; 113():38-44. PubMed ID: 29444474
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Critical assessment of the spectroscopic activity assay for monitoring trypsin activity in organic-aqueous solvent.
    Crowell AM; Stewart EJ; Take ZS; Doucette AA
    Anal Biochem; 2013 Apr; 435(2):131-6. PubMed ID: 23333224
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The effect of thionine on the kinetics of the beta-trypsin-catalyzed hydrolysis of tosyl-L-arginine methyl ester.
    Himoe A
    J Biol Chem; 1970 Apr; 245(7):1836-41. PubMed ID: 5438366
    [No Abstract]   [Full Text] [Related]  

  • 59. Kinetics of T3-DNA Ligase-Catalyzed Phosphodiester Bond Formation Measured Using the α-Hemolysin Nanopore.
    Tan CS; Riedl J; Fleming AM; Burrows CJ; White HS
    ACS Nano; 2016 Dec; 10(12):11127-11135. PubMed ID: 28024377
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modulation of global stability, ligand binding and catalytic properties of trypsin by anions.
    Dušeková E; Garajová K; Yavaşer R; Tomková M; Sedláková D; Dzurillová V; Kulik N; Fadaei F; Shaposhnikova A; Minofar B; Sedlák E
    Biophys Chem; 2022 Sep; 288():106856. PubMed ID: 35872468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.