BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 31684790)

  • 1. Copper oxide nanoparticles alter cellular morphology via disturbing the actin cytoskeleton dynamics in
    Jia H; Chen S; Wang X; Shi C; Liu K; Zhang S; Li J
    Nanotoxicology; 2020 Feb; 14(1):127-144. PubMed ID: 31684790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton.
    Van NL; Ma C; Shang J; Rui Y; Liu S; Xing B
    Chemosphere; 2016 Feb; 144():661-70. PubMed ID: 26408972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper oxide nanoparticles alter the uptake and distribution of cadmium through disturbing the ordered structure of the cell wall in Arabidopsis root.
    Jia H; Wei Y; An H; Wang Q; Yang J; Li C
    Plant Physiol Biochem; 2024 Feb; 207():108430. PubMed ID: 38364632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.).
    Wang Z; Xie X; Zhao J; Liu X; Feng W; White JC; Xing B
    Environ Sci Technol; 2012 Apr; 46(8):4434-41. PubMed ID: 22435775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Phytotoxicity of copper oxide nanoparticles to metabolic activity in the roots of rice].
    Wang SL; Zhang YX; Liu HZ; Xin H
    Huan Jing Ke Xue; 2014 May; 35(5):1968-73. PubMed ID: 25055694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen sulphide regulates the growth of tomato root cells by affecting cell wall biosynthesis under CuO NPs stress.
    Jia H; Ma P; Huang L; Wang X; Chen C; Liu C; Wei T; Yang J; Guo J; Li J
    Plant Biol (Stuttg); 2022 Jun; 24(4):627-635. PubMed ID: 34676641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress-induced toxicity of CuO nanoparticles and related toxicogenomic responses in Arabidopsis thaliana.
    Tang Y; He R; Zhao J; Nie G; Xu L; Xing B
    Environ Pollut; 2016 May; 212():605-614. PubMed ID: 27016889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of copper oxide nanoparticles on spring barley (Hordeum sativum distichum).
    Rajput V; Minkina T; Fedorenko A; Sushkova S; Mandzhieva S; Lysenko V; Duplii N; Fedorenko G; Dvadnenko K; Ghazaryan K
    Sci Total Environ; 2018 Dec; 645():1103-1113. PubMed ID: 30248835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential impacts of copper oxide nanoparticles and Copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa).
    Wang X; Sun W; Ma X
    Environ Pollut; 2019 Sep; 252(Pt B):967-973. PubMed ID: 31252135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of CuO Nanoparticles to Structure and Metabolic Activity of Allium cepa Root Tips.
    Deng F; Wang S; Xin H
    Bull Environ Contam Toxicol; 2016 Nov; 97(5):702-708. PubMed ID: 27704188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu from dissolution of CuO nanoparticles signals changes in root morphology.
    Adams J; Wright M; Wagner H; Valiente J; Britt D; Anderson A
    Plant Physiol Biochem; 2017 Jan; 110():108-117. PubMed ID: 27544889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CuO Nanoparticle Interaction with Arabidopsis thaliana: Toxicity, Parent-Progeny Transfer, and Gene Expression.
    Wang Z; Xu L; Zhao J; Wang X; White JC; Xing B
    Environ Sci Technol; 2016 Jun; 50(11):6008-16. PubMed ID: 27226046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CuO Nanoparticles Inhibited Root Growth from Brassica nigra Seedlings but Induced Root from Stem and Leaf Explants.
    Zafar H; Ali A; Zia M
    Appl Biochem Biotechnol; 2017 Jan; 181(1):365-378. PubMed ID: 27562818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis.
    Singh A; Singh NB; Hussain I; Singh H
    J Biotechnol; 2017 Nov; 262():11-27. PubMed ID: 28962841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens.
    Shi J; Peng C; Yang Y; Yang J; Zhang H; Yuan X; Chen Y; Hu T
    Nanotoxicology; 2014 Mar; 8(2):179-88. PubMed ID: 23311584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants.
    Peng C; Duan D; Xu C; Chen Y; Sun L; Zhang H; Yuan X; Zheng L; Yang Y; Yang J; Zhen X; Chen Y; Shi J
    Environ Pollut; 2015 Feb; 197():99-107. PubMed ID: 25521412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice.
    Wang S; Liu H; Zhang Y; Xin H
    Environ Toxicol Chem; 2015 Mar; 34(3):554-61. PubMed ID: 25475023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures.
    Wu F; Bortvedt A; Harper BJ; Crandon LE; Harper SL
    Aquat Toxicol; 2017 Sep; 190():78-86. PubMed ID: 28697458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): A study on growth dynamics and plant cell death.
    Ahmed B; Khan MS; Musarrat J
    Environ Pollut; 2018 Sep; 240():802-816. PubMed ID: 29783198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foliar uptake, biotransformation, and impact of CuO nanoparticles in Lactuca sativa L. var. ramosa Hort.
    Xiong T; Zhang T; Xian Y; Kang Z; Zhang S; Dumat C; Shahid M; Li S
    Environ Geochem Health; 2021 Jan; 43(1):423-439. PubMed ID: 32990874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.