These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31685371)

  • 1. Bioaccessibility of curcumin encapsulated in yeast cells and yeast cell wall particles.
    Young S; Rai R; Nitin N
    Food Chem; 2020 Mar; 309():125700. PubMed ID: 31685371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal and oxidative stability of curcumin encapsulated in yeast microcarriers.
    Young S; Nitin N
    Food Chem; 2019 Mar; 275():1-7. PubMed ID: 30724175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of dynamic bioaccessibility of curcumin encapsulated in milled starch particle stabilized Pickering emulsions using TNO's gastrointestinal model.
    Lu X; Zhu J; Pan Y; Huang Q
    Food Funct; 2019 May; 10(5):2583-2594. PubMed ID: 31011719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining in vitro digestion model with cell culture model: Assessment of encapsulation and delivery of curcumin in milled starch particle stabilized Pickering emulsions.
    Lu X; Li C; Huang Q
    Int J Biol Macromol; 2019 Oct; 139():917-924. PubMed ID: 31401275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering cell-based microstructures to study the effect of structural complexity on
    Lu Y; Rai R; Nitin N
    Food Funct; 2022 Jun; 13(12):6560-6573. PubMed ID: 35674207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted Photodynamic Treatment of Bacterial Biofilms Using Curcumin Encapsulated in Cells and Cell Wall Particles.
    Dou F; Huang K; Nitin N
    ACS Appl Bio Mater; 2021 Jan; 4(1):514-522. PubMed ID: 35014299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Digestion of Apple Tissue Using a Dynamic Stomach Model: Grinding and Crushing Effects on Polyphenol Bioaccessibility.
    Liu D; Dhital S; Wu P; Chen XD; Gidley MJ
    J Agric Food Chem; 2020 Jan; 68(2):574-583. PubMed ID: 31820633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geotrichum candidum arthrospore cell wall particles as a novel carrier for curcumin encapsulation.
    Wu Y; Wang X; Yin Z; Dong J
    Food Chem; 2023 Mar; 404(Pt B):134308. PubMed ID: 36323008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility.
    Li ZL; Peng SF; Chen X; Zhu YQ; Zou LQ; Liu W; Liu CM
    Food Res Int; 2018 Jun; 108():246-253. PubMed ID: 29735054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Submicron complex lipid carriers for curcumin delivery to intestinal epithelial cells: Effect of different emulsifiers on bioaccessibility and cell uptake.
    Yucel C; Quagliariello V; Iaffaioli RV; Ferrari G; Donsì F
    Int J Pharm; 2015 Oct; 494(1):357-69. PubMed ID: 26291881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacuum facilitated infusion of bioactives into yeast microcarriers: Evaluation of a novel encapsulation approach.
    Young S; Dea S; Nitin N
    Food Res Int; 2017 Oct; 100(Pt 2):100-112. PubMed ID: 28888430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and Pickering emulsion based on chitosan-tripolyphosphate nanoparticles.
    Shah BR; Zhang C; Li Y; Li B
    Food Res Int; 2016 Nov; 89(Pt 1):399-407. PubMed ID: 28460931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Nanocomplexes for Curcumin Vehiculization Using Ovalbumin and Sodium Alginate as Building Blocks: Improved Stability, Bioaccessibility, and Antioxidant Activity.
    Feng J; Xu H; Zhang L; Wang H; Liu S; Liu Y; Hou W; Li C
    J Agric Food Chem; 2019 Jan; 67(1):379-390. PubMed ID: 30566342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cell walls in the bioaccessibility of lipids in almond seeds.
    Ellis PR; Kendall CW; Ren Y; Parker C; Pacy JF; Waldron KW; Jenkins DJ
    Am J Clin Nutr; 2004 Sep; 80(3):604-13. PubMed ID: 15321799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encapsulation and release of curcumin using an intact milk fat globule delivery system.
    Alshehab M; Nitin N
    Food Funct; 2019 Nov; 10(11):7121-7130. PubMed ID: 31531433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of plant extract on the gastrointestinal fate of nutraceutical-loaded nanoemulsions: phytic acid inhibits lipid digestion but enhances curcumin bioaccessibility.
    Pei Y; Ai T; Deng Z; Wu D; Liang H; McClements DJ; Li B
    Food Funct; 2019 Jun; 10(6):3344-3355. PubMed ID: 31095149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Curcumin and genistein coloaded nanostructured lipid carriers: in vitro digestion and antiprostate cancer activity.
    Aditya NP; Shim M; Lee I; Lee Y; Im MH; Ko S
    J Agric Food Chem; 2013 Feb; 61(8):1878-83. PubMed ID: 23362941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complexation of curcumin with Lepidium sativum protein hydrolysate as a novel curcumin delivery system.
    Kadam D; Palamthodi S; Lele SS
    Food Chem; 2019 Nov; 298():125091. PubMed ID: 31272049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilizing food matrix effects to enhance nutraceutical bioavailability: increase of curcumin bioaccessibility using excipient emulsions.
    Zou L; Liu W; Liu C; Xiao H; McClements DJ
    J Agric Food Chem; 2015 Feb; 63(7):2052-62. PubMed ID: 25639191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cell wall compound of Saccharomyces cerevisiae as a novel wall material for encapsulation of probiotics.
    Mokhtari S; Jafari SM; Khomeiri M; Maghsoudlou Y; Ghorbani M
    Food Res Int; 2017 Jun; 96():19-26. PubMed ID: 28528098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.