These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 31685638)
1. Membrane intercalation-enhanced photodynamic inactivation of bacteria by a metallacycle and TAT-decorated virus coat protein. Gao S; Yan X; Xie G; Zhu M; Ju X; Stang PJ; Tian Y; Niu Z Proc Natl Acad Sci U S A; 2019 Nov; 116(47):23437-23443. PubMed ID: 31685638 [TBL] [Abstract][Full Text] [Related]
2. Photodynamic Inactivation of Bacteria with Porphyrin Derivatives: Effect of Charge, Lipophilicity, ROS Generation, and Cellular Uptake on Their Biological Activity In Vitro. Sułek A; Pucelik B; Kobielusz M; Barzowska A; Dąbrowski JM Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33218103 [TBL] [Abstract][Full Text] [Related]
4. Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Pereira MA; Faustino MA; Tomé JP; Neves MG; Tomé AC; Cavaleiro JA; Cunha Â; Almeida A Photochem Photobiol Sci; 2014 Apr; 13(4):680-90. PubMed ID: 24549049 [TBL] [Abstract][Full Text] [Related]
5. Photoinduced membrane damage of E. coli and S. aureus by the photosensitizer-antimicrobial peptide conjugate eosin-(KLAKLAK)2. Johnson GA; Ellis EA; Kim H; Muthukrishnan N; Snavely T; Pellois JP PLoS One; 2014; 9(3):e91220. PubMed ID: 24608860 [TBL] [Abstract][Full Text] [Related]
6. Influence of Cationic Hurst AN; Scarbrough B; Saleh R; Hovey J; Ari F; Goyal S; Chi RJ; Troutman JM; Vivero-Escoto JL Int J Mol Sci; 2019 Jan; 20(1):. PubMed ID: 30609680 [TBL] [Abstract][Full Text] [Related]
7. Rapid killing of bacteria by a new type of photosensitizer. Zhang Y; Zheng K; Chen Z; Chen J; Hu P; Cai L; Iqbal Z; Huang M Appl Microbiol Biotechnol; 2017 Jun; 101(11):4691-4700. PubMed ID: 28251266 [TBL] [Abstract][Full Text] [Related]
8. Pyridinium-substituted tetraphenylethylene salt-based photosensitizers by varying counter anions: a highly efficient photodynamic therapy for cancer cell ablation and bacterial inactivation. Xiong W; Wang L; Chen X; Tang H; Cao D; Zhang G; Chen W J Mater Chem B; 2020 Jun; 8(24):5234-5244. PubMed ID: 32432307 [TBL] [Abstract][Full Text] [Related]
9. Design of a Metallacycle-Based Supramolecular Photosensitizer for In Vivo Image-Guided Photodynamic Inactivation of Bacteria. Xu Y; Tuo W; Yang L; Sun Y; Li C; Chen X; Yang W; Yang G; Stang PJ; Sun Y Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202110048. PubMed ID: 34806264 [TBL] [Abstract][Full Text] [Related]
10. Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru(II)-based type I/type II photosensitizers. Arenas Y; Monro S; Shi G; Mandel A; McFarland S; Lilge L Photodiagnosis Photodyn Ther; 2013 Dec; 10(4):615-25. PubMed ID: 24284119 [TBL] [Abstract][Full Text] [Related]
11. The application of antimicrobial photodynamic therapy on S. aureus and E. coli using porphyrin photosensitizers bound to cyclodextrin. Hanakova A; Bogdanova K; Tomankova K; Pizova K; Malohlava J; Binder S; Bajgar R; Langova K; Kolar M; Mosinger J; Kolarova H Microbiol Res; 2014; 169(2-3):163-70. PubMed ID: 23899404 [TBL] [Abstract][Full Text] [Related]
13. Enhanced photodynamic inactivation for Gram-negative bacteria by branched polyethylenimine-containing nanoparticles under visible light irradiation. Wang Q; Zhang D; Feng J; Sun T; Li C; Xie X; Shi Q J Colloid Interface Sci; 2021 Feb; 584():539-550. PubMed ID: 33129163 [TBL] [Abstract][Full Text] [Related]
14. Cationic Phenosafranin Photosensitizers Based on Polyhedral Oligomeric Silsesquioxanes for Inactivation of Gram-Positive and Gram-Negative Bacteria. Rozga-Wijas K; Bak-Sypien I; Turecka K; Narajczyk M; Waleron K Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948170 [TBL] [Abstract][Full Text] [Related]
15. Refining antimicrobial photodynamic therapy: effect of charge distribution and central metal ion in fluorinated porphyrins on effective control of planktonic and biofilm bacterial forms. Pucelik B; Barzowska A; Sułek A; Werłos M; Dąbrowski JM Photochem Photobiol Sci; 2024 Mar; 23(3):539-560. PubMed ID: 38457119 [TBL] [Abstract][Full Text] [Related]
16. Photodynamic inactivation of methicillin-resistant Staphylococcus aureus and Escherichia coli: A metalloporphyrin comparison. Skwor TA; Klemm S; Zhang H; Schardt B; Blaszczyk S; Bork MA J Photochem Photobiol B; 2016 Dec; 165():51-57. PubMed ID: 27768953 [TBL] [Abstract][Full Text] [Related]
17. A versatile bacterial membrane-binding chimeric peptide with enhanced photodynamic antimicrobial activity. Zhang AN; Wu W; Zhang C; Wang QY; Zhuang ZN; Cheng H; Zhang XZ J Mater Chem B; 2019 Feb; 7(7):1087-1095. PubMed ID: 32254776 [TBL] [Abstract][Full Text] [Related]
18. Atomic force microscopic study on morphological alterations induced by photodynamic action of Toluidine Blue O in Staphylococcus aureus and Escherichia coli. Sahu K; Bansal H; Mukherjee C; Sharma M; Gupta PK J Photochem Photobiol B; 2009 Jul; 96(1):9-16. PubMed ID: 19423358 [TBL] [Abstract][Full Text] [Related]
19. Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria. Hamblin MR; O'Donnell DA; Murthy N; Rajagopalan K; Michaud N; Sherwood ME; Hasan T J Antimicrob Chemother; 2002 Jun; 49(6):941-51. PubMed ID: 12039886 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of photodynamic inactivation of Staphylococcus aureus biofilms by disruptive strategies. Gándara L; Mamone L; Bohm GC; Buzzola F; Casas A Lasers Med Sci; 2017 Nov; 32(8):1757-1767. PubMed ID: 28612299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]