These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31685732)

  • 1. [Development and Application of Catalytic Tyrosine Chemical Modification].
    Sato S
    Yakugaku Zasshi; 2019; 139(11):1365-1375. PubMed ID: 31685732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development and Application of Catalytic Tyrosine Modification].
    Sato S; Tsushima M; Nakamura K; Nakamura H
    Yakugaku Zasshi; 2018; 138(1):39-46. PubMed ID: 29311464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein Chemical Modification Using Highly Reactive Species and Spatial Control of Catalytic Reactions.
    Sato S
    Chem Pharm Bull (Tokyo); 2022; 70(2):95-105. PubMed ID: 35110442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosine-Specific Chemical Modification with in Situ Hemin-Activated Luminol Derivatives.
    Sato S; Nakamura K; Nakamura H
    ACS Chem Biol; 2015 Nov; 10(11):2633-40. PubMed ID: 26356088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Target Protein Identification on Photocatalyst-Functionalized Magnetic Affinity Beads.
    Tsushima M; Sato S; Nakane K; Nakamura H
    Curr Protoc Protein Sci; 2020 Sep; 101(1):e108. PubMed ID: 32603537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N'-acyl-N-methylphenylenediamine as a novel proximity labeling agent for signal amplification in immunohistochemistry.
    Sato S; Yoshida M; Hatano K; Matsumura M; Nakamura H
    Bioorg Med Chem; 2019 Mar; 27(6):1110-1118. PubMed ID: 30738654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-Selective Protein Chemical Modification of Exposed Tyrosine Residues Using Tyrosine Click Reaction.
    Sato S; Matsumura M; Kadonosono T; Abe S; Ueno T; Ueda H; Nakamura H
    Bioconjug Chem; 2020 May; 31(5):1417-1424. PubMed ID: 32223219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Labeling of Peroxide-Induced Oxidative Stress Hotspots by Hemin-Catalyzed Tyrosine Click.
    Sato S; Nakamura H
    Chem Pharm Bull (Tokyo); 2020; 68(9):885-890. PubMed ID: 32879229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horseradish-Peroxidase-Catalyzed Tyrosine Click Reaction.
    Sato S; Nakamura K; Nakamura H
    Chembiochem; 2017 Mar; 18(5):475-478. PubMed ID: 28009088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G-quadruplex-proximity protein labeling based on peroxidase activity.
    Masuzawa T; Sato S; Niwa T; Taguchi H; Nakamura H; Oyoshi T
    Chem Commun (Camb); 2020 Oct; 56(78):11641-11644. PubMed ID: 33000777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemin-Graphene Derivatives with Increased Peroxidase Activities Restrain Protein Tyrosine Nitration.
    Xu H; Yang Z; Li H; Gao Z
    Chemistry; 2017 Dec; 23(70):17755-17763. PubMed ID: 29024098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective purification and chemical labeling of a target protein on ruthenium photocatalyst-functionalized affinity beads.
    Tsushima M; Sato S; Nakamura H
    Chem Commun (Camb); 2017 Apr; 53(35):4838-4841. PubMed ID: 28418420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalization of Human Serum Albumin by Tyrosine Click.
    Obara S; Nakane K; Fujimura C; Tomoshige S; Ishikawa M; Sato S
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1-Methyl-4-aryl-urazole (MAUra) labels tyrosine in proximity to ruthenium photocatalysts.
    Sato S; Hatano K; Tsushima M; Nakamura H
    Chem Commun (Camb); 2018 Jun; 54(46):5871-5874. PubMed ID: 29785428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-directed selective protein modification based on local single-electron-transfer catalysis.
    Sato S; Nakamura H
    Angew Chem Int Ed Engl; 2013 Aug; 52(33):8681-4. PubMed ID: 23824878
    [No Abstract]   [Full Text] [Related]  

  • 16. Protein Chemical Labeling Using Biomimetic Radical Chemistry.
    Sato S; Nakamura H
    Molecules; 2019 Nov; 24(21):. PubMed ID: 31684188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An enhanced chemiluminescence resonance energy transfer system based on target recycling G-guadruplexes/hemin DNAzyme catalysis and its application in ultrasensitive detection of DNA.
    Chen J; Huang Y; Vdovenko M; Sakharov IY; Su G; Zhao S
    Talanta; 2015 Jun; 138():59-63. PubMed ID: 25863372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of ruthenium-cytochrome c derivatives to measure electron transfer to cytochrome c peroxidase.
    Liu RQ; Geren L; Anderson P; Fairris JL; Peffer N; McKee A; Durham B; Millet F
    Biochimie; 1995; 77(7-8):549-61. PubMed ID: 8589066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switching of Photocatalytic Tyrosine/Histidine Labeling and Application to Photocatalytic Proximity Labeling.
    Nakane K; Nagasawa H; Fujimura C; Koyanagi E; Tomoshige S; Ishikawa M; Sato S
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36232972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition metal catalyzed methods for site-selective protein modification.
    Antos JM; Francis MB
    Curr Opin Chem Biol; 2006 Jun; 10(3):253-62. PubMed ID: 16698310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.