BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31685753)

  • 1. Reactions of Methotrexate with Hypobromous Acid and Hypochlorous Acid.
    Suzuki T; Takeuchi R
    Chem Pharm Bull (Tokyo); 2019; 67(11):1250-1254. PubMed ID: 31685753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of Rebamipide with Hypobromous Acid.
    Suzuki T; Okuyama A
    Chem Pharm Bull (Tokyo); 2019; 67(10):1164-1167. PubMed ID: 31582637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of kynurenic acid with hypobromous acid and hypochlorous acid.
    Suzuki T; Morishita H; Fukuhara K
    J Clin Biochem Nutr; 2021 May; 68(3):215-220. PubMed ID: 34025023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced bromate formation during chlorination of bromide-containing waters in the presence of CuO: catalytic disproportionation of hypobromous acid.
    Liu C; von Gunten U; Croué JP
    Environ Sci Technol; 2012 Oct; 46(20):11054-61. PubMed ID: 22963047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential reactivities of hypochlorous and hypobromous acids with purified Escherichia coli phospholipid: formation of haloamines and halohydrins.
    Carr AC; van den Berg JJ; Winterbourn CC
    Biochim Biophys Acta; 1998 Jun; 1392(2-3):254-64. PubMed ID: 9630661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of lysine during protein modification by HOCl and HOBr: halogen-transfer agent or sacrificial antioxidant?
    Sivey JD; Howell SC; Bean DJ; McCurry DL; Mitch WA; Wilson CJ
    Biochemistry; 2013 Feb; 52(7):1260-71. PubMed ID: 23327477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypobromous acid, a powerful endogenous electrophile: Experimental and theoretical studies.
    Ximenes VF; Morgon NH; de Souza AR
    J Inorg Biochem; 2015 May; 146():61-8. PubMed ID: 25771434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Urea on the Reactions of Nucleosides with Hypobromous Acid.
    Suzuki T; Kumagai M; Furusawa M
    Chem Pharm Bull (Tokyo); 2019; 67(7):707-712. PubMed ID: 31257326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of low-density lipoprotein modification by myeloperoxidase-derived hypochlorous and hypobromous acids.
    Carr AC; Decker EA; Park Y; Frei B
    Free Radic Biol Med; 2001 Jul; 31(1):62-72. PubMed ID: 11425491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A comparative spin trapping study of hypobromous and hypochlorous acids interaction with tert-butyl hydroperoxide].
    Chekanov AV; Osipov AN; Vladimirov IuA; Sergienko VI; Panasenko OM
    Biofizika; 2007; 52(1):5-13. PubMed ID: 17348389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light emission from tryptophan oxidation by hypobromous acid.
    PetrĂ´nio MS; Ximenes VF
    Luminescence; 2013; 28(6):853-9. PubMed ID: 23034821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid.
    Lloyd MM; van Reyk DM; Davies MJ; Hawkins CL
    Biochem J; 2008 Sep; 414(2):271-80. PubMed ID: 18459943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of human red cell lysis by hypochlorous and hypobromous acids: insights into the mechanism of lysis.
    Vissers MC; Carr AC; Chapman AL
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):131-8. PubMed ID: 9461501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific role of taurine in the 8-brominated-2'-deoxyguanosine formation.
    Asahi T; Nakamura Y; Kato Y; Osawa T
    Arch Biochem Biophys; 2015 Nov; 586():45-50. PubMed ID: 26456401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of hypobromous acid in the transformation of polycyclic aromatic hydrocarbons during chlorination.
    Liu Q; Xu X; Fu J; Du Y; Lin L; Bai L; Wang D
    Water Res; 2021 Dec; 207():117787. PubMed ID: 34731666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypochlorite- and hypobromite-mediated radical formation and its role in cell lysis.
    Hawkins CL; Brown BE; Davies MJ
    Arch Biochem Biophys; 2001 Nov; 395(2):137-45. PubMed ID: 11697850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress.
    Pattison DI; Davies MJ
    Biochemistry; 2004 Apr; 43(16):4799-809. PubMed ID: 15096049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myeloperoxidase-derived oxidants rapidly oxidize and disrupt zinc-cysteine/histidine clusters in proteins.
    Cook NL; Pattison DI; Davies MJ
    Free Radic Biol Med; 2012 Dec; 53(11):2072-80. PubMed ID: 23032100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypobromous acid and bromamine production by neutrophils and modulation by superoxide.
    Chapman AL; Skaff O; Senthilmohan R; Kettle AJ; Davies MJ
    Biochem J; 2009 Feb; 417(3):773-81. PubMed ID: 18851713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Monitoring and Imaging of Eosinophil Peroxidase Activity with a J-Aggregating Probe.
    Kim TI; Hwang B; Lee B; Bae J; Kim Y
    J Am Chem Soc; 2018 Sep; 140(37):11771-11776. PubMed ID: 30156836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.