These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31685904)

  • 1. Damage analysis of a perfect broadband absorber by a femtosecond laser.
    Haque A; Morshed M; Li Z; Li L; Vora K; Xu L; Fu L; Miroshnichenko A; Hattori HT
    Sci Rep; 2019 Nov; 9(1):15880. PubMed ID: 31685904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refractory plasmonics with titanium nitride: broadband metamaterial absorber.
    Li W; Guler U; Kinsey N; Naik GV; Boltasseva A; Guan J; Shalaev VM; Kildishev AV
    Adv Mater; 2014 Dec; 26(47):7959-65. PubMed ID: 25327161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metamaterial perfect absorber based hot electron photodetection.
    Li W; Valentine J
    Nano Lett; 2014 Jun; 14(6):3510-4. PubMed ID: 24837991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation.
    Liu Z; Liu X; Huang S; Pan P; Chen J; Liu G; Gu G
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4962-8. PubMed ID: 25679790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Study of Ultra-Broadband Metamaterial Perfect Absorber Based on Four-Corner Star Array.
    Cheng Y; Xiong M; Chen M; Deng S; Liu H; Teng C; Yang H; Deng H; Yuan L
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perfect selective metamaterial solar absorbers.
    Wang H; Wang L
    Opt Express; 2013 Nov; 21 Suppl 6():A1078-93. PubMed ID: 24514927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband Perfect Absorber in the Visible Range Based on Metasurface Composite Structures.
    Wang R; Yue S; Zhang Z; Hou Y; Zhao H; Qu S; Li M; Zhang Z
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35407943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-broadband metamaterial absorbers from long to very long infrared regime.
    Zhou Y; Qin Z; Liang Z; Meng D; Xu H; Smith DR; Liu Y
    Light Sci Appl; 2021 Jul; 10(1):138. PubMed ID: 34226489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-Broadband Perfect Absorber based on Titanium Nanoarrays for Harvesting Solar Energy.
    Song D; Zhang K; Qian M; Liu Y; Wu X; Yu K
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gradient index effect assisted anisotropic broadband absorption in α-MoO
    Liu H; Wu B; Yang B; Ai Q; Xie M; Wu X
    Appl Opt; 2023 Apr; 62(11):2711-2719. PubMed ID: 37133110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial.
    Lei L; Li S; Huang H; Tao K; Xu P
    Opt Express; 2018 Mar; 26(5):5686-5693. PubMed ID: 29529770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multipole Resonance in Arrays of Diamond Dielectric: A Metamaterial Perfect Absorber in the Visible Regime.
    Li C; Fan H; Dai Q; Wei Z; Lan S; Liu H
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31470586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material.
    Mou N; Liu X; Wei T; Dong H; He Q; Zhou L; Zhang Y; Zhang L; Sun S
    Nanoscale; 2020 Mar; 12(9):5374-5379. PubMed ID: 31994580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refractory Ultra-Broadband Perfect Absorber from Visible to Near-Infrared.
    Gao H; Peng W; Chu S; Cui W; Liu Z; Yu L; Jing Z
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30545120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies.
    Cao T; Wei CW; Simpson RE; Zhang L; Cryan MJ
    Sci Rep; 2014 Feb; 4():3955. PubMed ID: 24492415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elliptical metallic rings-shaped fractal metamaterial absorber in the visible regime.
    Bilal RMH; Saeed MA; Choudhury PK; Baqir MA; Kamal W; Ali MM; Rahim AA
    Sci Rep; 2020 Aug; 10(1):14035. PubMed ID: 32820192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable broadband all-silicon terahertz absorber based on a simple metamaterial structure.
    Lang T; Shen T; Wang G; Shen C
    Appl Opt; 2020 Jul; 59(21):6265-6270. PubMed ID: 32749287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-perfect broadband infrared metamaterial absorber utilizing nickel.
    Parsamyan H
    Appl Opt; 2020 Sep; 59(25):7504-7509. PubMed ID: 32902448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.