BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 31686038)

  • 1. Learning representations of microbe-metabolite interactions.
    Morton JT; Aksenov AA; Nothias LF; Foulds JR; Quinn RA; Badri MH; Swenson TL; Van Goethem MW; Northen TR; Vazquez-Baeza Y; Wang M; Bokulich NA; Watters A; Song SJ; Bonneau R; Dorrestein PC; Knight R
    Nat Methods; 2019 Dec; 16(12):1306-1314. PubMed ID: 31686038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MiMeNet: Exploring microbiome-metabolome relationships using neural networks.
    Reiman D; Layden BT; Dai Y
    PLoS Comput Biol; 2021 May; 17(5):e1009021. PubMed ID: 33999922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep in the Bowel: Highly Interpretable Neural Encoder-Decoder Networks Predict Gut Metabolites from Gut Microbiome.
    Le V; Quinn TP; Tran T; Venkatesh S
    BMC Genomics; 2020 Jul; 21(Suppl 4):256. PubMed ID: 32689932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fermentation product 2,3-butanediol alters P. aeruginosa clearance, cytokine response and the lung microbiome.
    Nguyen M; Sharma A; Wu W; Gomi R; Sung B; Hospodsky D; Angenent LT; Worgall S
    ISME J; 2016 Dec; 10(12):2978-2983. PubMed ID: 27177192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking Polymicrobial Metabolism in Cystic Fibrosis Airways:
    Gao B; Gallagher T; Zhang Y; Elbadawi-Sidhu M; Lai Z; Fiehn O; Whiteson KL
    mSphere; 2018 Apr; 3(2):. PubMed ID: 29695623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of multispecies social interactions in shaping Pseudomonas aeruginosa pathogenicity in the cystic fibrosis lung.
    O'Brien S; Fothergill JL
    FEMS Microbiol Lett; 2017 Aug; 364(15):. PubMed ID: 28859314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scorpionfish BPI is highly active against multiple drug-resistant
    Holzinger JM; Toelge M; Werner M; Ederer KU; Siegmund HI; Peterhoff D; Blaas SH; Gisch N; Brochhausen C; Gessner A; Bülow S
    Elife; 2023 Jul; 12():. PubMed ID: 37461324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specialized metabolites from the microbiome in health and disease.
    Sharon G; Garg N; Debelius J; Knight R; Dorrestein PC; Mazmanian SK
    Cell Metab; 2014 Nov; 20(5):719-730. PubMed ID: 25440054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cystic fibrosis lung environment and Pseudomonas aeruginosa infection.
    Bhagirath AY; Li Y; Somayajula D; Dadashi M; Badr S; Duan K
    BMC Pulm Med; 2016 Dec; 16(1):174. PubMed ID: 27919253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro evolution of Pseudomonas aeruginosa AA2 biofilms in the presence of cystic fibrosis lung microbiome members.
    Vandeplassche E; Sass A; Lemarcq A; Dandekar AA; Coenye T; Crabbé A
    Sci Rep; 2019 Sep; 9(1):12859. PubMed ID: 31492943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mucoid gram-negative bacilli in cystic fibrosis.
    Kelly NM; Falkiner FR; Keane CT; Fitzgerald MX; Tempany E
    Lancet; 1983 Mar; 1(8326 Pt 1):705. PubMed ID: 6132059
    [No Abstract]   [Full Text] [Related]  

  • 12. Commensal Bacteria in the Cystic Fibrosis Airway Microbiome Reduce
    Tony-Odigie A; Wilke L; Boutin S; Dalpke AH; Yi B
    Front Cell Infect Microbiol; 2022; 12():824101. PubMed ID: 35174108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lung and Gut Microbiota Changes Associated with
    Bacci G; Rossi A; Armanini F; Cangioli L; De Fino I; Segata N; Mengoni A; Bragonzi A; Bevivino A
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning, visualizing and exploring 16S rRNA structure using an attention-based deep neural network.
    Zhao Z; Woloszynek S; Agbavor F; Mell JC; Sokhansanj BA; Rosen GL
    PLoS Comput Biol; 2021 Sep; 17(9):e1009345. PubMed ID: 34550967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disruption of Cross-Feeding Inhibits Pathogen Growth in the Sputa of Patients with Cystic Fibrosis.
    Flynn JM; Cameron LC; Wiggen TD; Dunitz JM; Harcombe WR; Hunter RC
    mSphere; 2020 Apr; 5(2):. PubMed ID: 32350096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting human microbe-disease associations via graph attention networks with inductive matrix completion.
    Long Y; Luo J; Zhang Y; Xia Y
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32725163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into dryland biocrust microbiome: geography, soil depth and crust type affect biocrust microbial communities and networks in Mojave Desert, USA.
    Pombubpa N; Pietrasiak N; De Ley P; Stajich JE
    FEMS Microbiol Ecol; 2020 Sep; 96(9):. PubMed ID: 32573682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpreting infective microbiota: the importance of an ecological perspective.
    Rogers GB; Hoffman LR; Carroll MP; Bruce KD
    Trends Microbiol; 2013 Jun; 21(6):271-6. PubMed ID: 23598051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering the Ecology of Cystic Fibrosis Bacterial Communities: Towards Systems-Level Integration.
    Bevivino A; Bacci G; Drevinek P; Nelson MT; Hoffman L; Mengoni A
    Trends Mol Med; 2019 Dec; 25(12):1110-1122. PubMed ID: 31439509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chronic but not intermittent infection with
    Boutin S; Graeber SY; Stahl M; Dittrich AS; Mall MA; Dalpke AH
    Eur Respir J; 2017 Oct; 50(4):. PubMed ID: 28982777
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 18.